高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
颌骨修复材料研发团队揭示纳米表面性能对骨免疫的调控机制
 纳米表面结构引导骨再生是当前骨替代修复材料领域一个新的研究方向及研究热点。目前的研究主要集中在纳米表面结构对成骨细胞系成骨分化的调控机制,而对成骨微环境中免疫细胞的调控作用研究甚少。本研究系统比较了巨噬细胞对不同纳米颗粒大小(16,38,68 nm)和不同表面化学成分(富含胺基的丙烯胺及富含羧基的丙烯酸)的纳米表面结构生物材料的免疫应答差异,发现纳米表面结构可以改变巨噬细胞的形态,将胞外的理化信号转入胞内,激活自噬反应,从而调控免疫微环境,影响间充质干细胞的成骨分化。      该研究从骨形成免疫微环境的角度提出了“纳米表面引导成骨”的新机制,提示通过精准控制生物材料的纳米表面结构,可靶向调控免疫细胞,营造有利于骨形成的免疫微环境,最终实现纳米成骨,为纳米骨生物材料的研发提供了新的策略。
中山大学 2021-04-13
次氧化锌粉深度治理低浓度 SO2 烟气耦合提取有价组元新 技术
用次氧化锌粉浆液吸收治理低浓度 SO 2 烟气,同时实现次氧化锌粉中伴生有价组元的耦合提取;采用亚硫酸锌浆液的催化氧化方法,同时实现了浆液中 F、Cl 离子的耦合共沉淀;优化创新了高砷含氟、氯物料的硫酸化焙烧脱砷/脱氟/脱氯技术,实现了砷/氟/氯的协同治理;优化创新了铟的富集、提取技术,形成绿色、高效的次氧化锌粉深度治理低浓度 SO 2 烟气耦合提取有价组元新技术。
北京科技大学 2021-04-13
一种生物电化学系统与UASB耦合的废水处理装置
本实用新型公开了一种基于阴极电势调控的生物电化学耦合上流式厌氧生物反应装置。该装置中,上流式厌氧生物反应器污泥层中设置环形电极,生物电极系统为所述的上流式厌氧生物反应器筒体内阴极附近的微生物提供能量较高的电子用于污染物的降解。参比电极通过紧固螺栓固定于生物阴极附近,并通过导线与在线检测仪和计算机连接,用于实时监测耦合反应器生物阴极的阴极电势。可根据不同污染物降解所需的吉布斯自由能通过能斯特方程计算反应所需的电势差,并通过调节生物电化学系统的外加电压将阴极电势控制在略低于所需电势差的范围内,达到低能耗,高效率地降解氯代硝基苯等难降解有机污染物的目的。
浙江大学 2021-04-13
多级环流曝气及厌氧——好氧耦合环流曝气污水生物处理技术
1 成果简介利用生物方法进行污水处理,已经经历了一个多世纪的发展。但是,在活性污泥法的应用中,仍然存在以下主要缺点:曝气池占地面积很大,曝气后气体排放造成二次污染;曝气过程中活性污泥、空气和污水三相混合不均匀,氧传递速率较慢,氧气利用率不高,使得曝气效率低;剩余污泥排放量大。本研究室基于多年来对环流反应器流体力学特性和工程应用的研究,提出了采用多级环流装置作为活性污泥曝气的新方式,并经过 10 多年的基础、应用以及工业化研究,形成了一套高效的活性污泥的处理污水的新工艺—多级环流曝气工艺。该工艺可改善氧的传质,增加氧的利用率,从而减少动力消耗;该工艺还可减少生物处理过程中剩余污泥的产量,减轻处理污泥的负担;同时,该工艺的生物处理构筑物占地面积显著减小,可节约投资。该工艺已经完成了 20 吨/天的工业中试,通过了专家鉴定;并在处理印 染污水等方面已经建成了工业应用装置,目前运行良好。 在多级环流曝气工艺的基础上,针对含有中低浓度难降解有机物的污水,本研究室又开发了厌氧-好氧耦合环流曝气污水生物处理技术,以提高难降解有机物的处理效率。通过在多级环流塔内的悬浮污泥中添加具有特殊孔隙结构和尺度的载体材料,利用氧的传递阻力在载体内部形成厌氧菌生存的环境,构成专性厌氧菌生长区。通过被动扩散和流体的冲刷作用,有机物可以扩散进入载体内部,并被厌氧菌降解,同时载体内部的厌氧降解产物也可进入流化床主体,实现厌氧生物降解和好氧生物降解的耦合。该工艺具有高效的好氧降解过程和厌氧降解过程, 且将厌氧和好像过程结合在一个装置中进行,高度集成化,设备投资小、处理效率高、占地面积小。该工艺已经在含酚废水、 PTA 废水、炼油废水方面已经开展了大量的工艺开发和工业模拟实验,取得了理想的处理效果。2 技术指标( 1) 多级环流曝气:溶解氧浓度可达到 6mg/L 以上,较廊道式曝气池,占地面积可减小 80% 以上,处理时间可缩短 50%以上。 ( 2) 厌氧-好氧耦合环流曝气: COD 的容积负荷可达到 7g/L∙d 以上,对 COD 浓度小于2500 mg/L 的含酚废水、 PTA 废水等废水, COD 去除率达到 95%以上。3 应用说明该技术主要针对各类石化、化工及其他含有难降解有机物废水的处理,小规模现场集成式污水处理(如机场、远郊住宅小区等)以及污水的点源治理。 多级环流曝气应用包括两种方式:① 以环流曝气塔式设备替换现有的曝气池、初沉池;② 在现有的深度在 4m 以上的廊道式曝气池进行改造。多级环流曝气塔为新型塔式曝气处理设备为专利设备,具有处理效率高,占地面积小等显著优势。 20 吨/天的工业中试结果(乙烯综合废水, COD 约为 1000 mg/L,)显示,和该厂现有的廊道式曝气池相比,占地面积可减小 80% 以上,处理时间可缩短 50%以上, 出口废水稳 COD 定在 60 mg/L 以内,特别适合于土地资源紧张、处理效率要求高的生产、生活部门。多级环流曝气塔顶部还有集成的泥水分离器,可将出水中的污泥分离,在污泥沉降良好的情况下,可直接排放,不需要初沉和二沉设备,使设备投资、能耗以及占地面积大幅度降低;即使对沉降性能不佳的污泥,也可达到初沉的作用,节省初沉设备和运行费用。 通过对现有的深度在 4m 以上的廊道式曝气池进行改造,也可实现多级环流曝气,方法是在曝气池内改造曝气系统,加装多级导流筒内构件。其改造简单,投资小,但对废水处理的效果有显著的提高。采用多级环流曝气后,曝气池内的溶解氧浓度提高 50% (可达到 6 mg/L以上)以上,悬浮污泥浓度提高 30%以上,在达到相同处理效果的前提下,水力停留时间可减小 50%以上,处理负荷提高 50%以上,特别适合于对现有装置增容的技术改造。由于溶解氧浓度高,剩余污泥的产量也显著降低。 厌氧-好氧耦合环流曝气工艺,通过在多级环流曝气塔中添加高孔隙率的聚合物填料,在填料内部形成的缺氧环境,可发生水解-酸化反应,通过水解-酸化将难降解有机物降解为挥发性脂肪酸,进一步由装置中主体的悬浮污泥进行好氧代谢,实现了厌氧—好氧生物降解的耦合,提高了难降解有机物的降解效率。工业模拟装置的研究表明,对 COD 浓度达到 3500mg/L 的含酚废水,采用厌氧-好氧耦合环流曝气工艺, 24h 内 COD 可降解至 100 mg/L 以下;对 COD 浓度达到 2500 mg/L 的 PTA 废水,采用厌氧-好氧耦合环流曝气工艺, 16 h 内 COD可降解至 100 mg/L 以下;对 COD 达到 2000 mg/L, BOD/COD<0.1 的炼油废水,采用厌氧-好氧耦合环流曝气工艺, 24 h 内 COD 可降解至 60 mg/L 以下。上述处理效果,均优于传统的 A/O 或者 A/A/O 续批式联合工艺,占地面积低于这些工艺的 1/8。4 合作方式商谈。
清华大学 2021-04-13
一种耦合太阳能与化学链空分技术的低能耗富氧燃烧系统
本发明公开了一种耦合太阳能与化学链空分技术的低能耗富氧燃烧系统,该系统包括干蒸汽制取装置、化学链空分装置以及富氧燃烧装置,其中,干蒸汽制取装置包括太阳能集热器、蒸汽发生器和分流器,干蒸汽制取装置生成的干蒸汽经分流器分为两股:一股干蒸汽进入化学链空分装置用于吸氧反应器的流化气,另一股干蒸汽进入富氧燃烧装置,化学链空分装置生成的高纯度氧气进入富氧燃烧装置与干蒸汽和燃料进行混合燃烧,产物经简单冷凝分离后获得高纯度的二
华中科技大学 2021-04-14
MXY5008光纤耦合及光无源器件参数测试与 光纤端面处理熔接实训系统
一、产品简介        光纤通信作为一门新兴技术,它具有容量大、中继距离长、保密性好、不受电磁干扰和节省铜材等优点。近年来发展速度快,已被广泛应用到军事通信、民用通信等各种领域,是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。在光纤的使用过程中,光纤线路的耦合对于其中光功率的传输至关重要。其中存在着两种主要的系统问题:1、如何从多种类型的发光光源将光功率耦合进一根特定的光纤;2、如何将光功率从一个光纤发射出来后经过特定的装置耦合进另外一根光纤。光无源器件是光纤通信设备的重要组成部分。它是一种光学元器件,也是其它光纤应用领域不可缺少的元器件。该实验仪重点介绍了常用的光无源器件的相关参数及测试方法。为此公司研制出本实验系统,让学生了解和认识光纤耦合的相关参数和特性、光无源器件的相关参数及测试方法等,通过实验平台的搭建,可以让学生更深刻的了解,也能锻炼学生校准光路等方面的动手能力,是学校金工实习(工程实习)与工程检测的不二之选。 二、实验内容 650nm激光器与光纤耦合实验 1550nm光纤激光器与光纤耦合实验 相同模式光纤之间耦合实验 不同模式光纤之间耦合实验 光源与显微物镜及准直器耦合特性对比实验 光纤转换器测试实验 光纤变换器测试实验 光纤耦合器测试实验 光纤隔离器特性测试实验 波分复用器和解复用器测试实验 可调光纤衰减器测试实验 光纤机械光开关特性测试实验 光纤偏振控制器特性测试实验 光纤偏振分束器(PBS)性能能参数测试实验 不同种类光纤、光缆及光器件认知和操作实验 熔接机原理及使用实训操作实验 剥纤、清洁、切纤及光纤接续实训操作实验 手动模式下,光纤熔接实训实验 自定义模式下,光纤熔接实训实验 光纤端面处理基本操作实验 光纤耦合技术基本操作实验 光纤耦合技术基本操作实验 光功率耗损法对光纤熔接质量测试 三、实验配置参数 1、光源:波长1310±20nm,1550±20nm;输出功率:1-2.5mw,连续可调;输出端口:FC/PC;稳定性<0.5db(5h);光源类型:LD光源; 2、光功率计:波长范围800-1700nm;输入接口:FC 校准波长:1550nm,1310nm; 3、偏振控制器:插入损耗<0.05dB;消光比>40dB;回波损耗>65dB; 4、光纤机械光开关:插入损耗:1310/1550  P1→P2 0.56/0.54 dB ,P1→P3 0.53/0.47 dB ;回波损耗>50dB ;开关速度:≦8ms ; 5、高隔离度光纤隔离器:最大插入损耗:0.35dB ;回波损耗:≧50dB ;隔离度:≧30dB ; 6、光纤耦合器:分光比:50% : 50% ;最大插入损耗1310/1550: 3.3dB ; 7、光纤波分复用器:隔离度:1310nm :31.8% ;1550nm :34%;插入损耗:1310nm :0.30%;1550nm :0.34% ; 8、光纤可调衰减器:0-30db可调; 9、软件:配套仪器使用,数据采集处理; 10、光纤熔接机:适用光纤:SM (单模), MM (多模), DS (色散位移)光纤, NZDS (非零色散位移,即G.655光纤),BIF/UBIF(G.657); 光纤切割长度:8-16mm, 被覆光纤直径250µm,16mm,被覆光纤直径250µm-1000µm;平均接续损耗:0.02dB(SM)、0.01dB(MM)、0.04dB(DS)、0.04dB(NZDS);显示:高性能5.6英寸彩色LCD显示屏,提供清晰的数字图像显示;电极寿命:2500次;锂电池容量:典型熔接250次,充电时间3小时,可在充电时使用;电源:交流适配器输入电压100-240V  50/60Hz,输出电压:DC13.5V /5A,直流输入电压11.1v ( 内置锂电池8800mAh ); 四、实验目的  1、了解光纤连接器及其原理、种类,实验操作进行连接器参数测量; 2、掌握光纤头平端面的处理技术。 3、掌握光纤之间的耦合、调试技术,了解光纤横向和纵向偏差对光纤耦合损耗的影响。 4、掌握光纤熔接的基本技术。 5、熟悉光纤型号及结构,掌握其装配方法、使用环境及保护措施等;
天津梦祥原科技有限公司 2021-12-17
城市公用事业特许经营权竞标机制分类设计与管制政策研究
浙江财经大学王岭副研究员编著的《城市公用事业特许经营权竞标机制分类设计与管制政策研究》2017年12月由中国社会科学出版社出版,获2019年“浙江省第二十届哲学社会科学优秀成果奖”三等奖(基础理论研究类)。 该书是国家自然科学基金青年项目“城市公用事业特许经营权竞标机制分类设计与管制政策研究”(批准号:71303208)的最终研究成果。中国城市公用事业长期游历于市场经济体制之外,这不仅直接影响着城市公用事业产品供给的可持续性,而且也直接或间接地影响了整个城市功能的有效发挥,乃至影响了政府职能的转变和市场化进程的有序推进。在增加供给与提升效率的双重目标下,中国政府顺势而为,提出了深化城市公用事业市场化改革的重要举措,这需要创新政府管制体制,发挥市场竞争机制,实现特许经营权竞标的有效性。为此,构建可竞争的市场机制已然成为城市公用事业市场化改革的核心内容,特许经营是市场化改革的重要制度,目前已经遍地开花,但在城市公用事业特许经营权竞标过程中依然存在着低价中标、固定回报、变相固定回报等一些“伪PPP”问题,这在一定程度上背离了通过特许经营模式提高运营企业效率的初衷。同时,现有城市公用事业特许经营项目的竞标机制往往参照工程项目,忽视了城市公用事业的同质性与异质性特征,从而限制了特许经营权竞标机制的适用范围。因此,在深化城市公用事业市场化改革的背景下,如何分类设计城市公用事业特许经营权项目竞标机制,制定与之相适应的管制政策,实现城市公用事业特许经营权的有效分配,促进城市公用事业运行效率和服务水平的提升,已然成为中国理论研究和实际应用过程中最为关注的重要议题之一。
浙江财经大学 2021-04-30
养殖环境微生物监测及其传染效果与气溶胶的发生、传播和感染机制
针对规模化畜禽生产中动物健康、环境卫生和牧场的废气排放造成的社区环境污染,以及动物源人兽共患病的流行和“超级细菌”导致的公共卫生问题,受17个国家、省部和国际合作项目资助,申请人系统地对畜禽场舍内外环境微生物监测,在国内首次阐明密集的畜禽饲养使微生物气溶胶的含量升高、环境质量变坏、并向场舍外扩散;在国际上首次建立了病毒气溶胶传染模型,揭示了禽流感等4种病毒气溶胶的发生、传播及感染机制,认识了疫病气源性传染的过程与规律,丰富了流行病学理论。 从事该领域工作20余年,37名博、硕研究生参与,发表SCI论文35篇,总影响因子116,他人引用536次;检测技术获得2项国家发明专利;一项国家国际合作项目验收为优秀。 (1)确认了畜禽场舍的微生物气溶胶的来源及其传播。即对养鸡猪牛兔等场舍(共126个场)及场舍外不同距离的气载需氧菌、厌氧菌、革兰氏阴性菌及内毒素、真菌及真菌毒素监测,获得了其含量及不同菌群的构成成分;揭示了养殖环境微生物气溶胶向场舍外包括社区居民环境的扩散,在200m之内污染严重。借此,评估了畜禽舍环境卫生和疫病流行风险及对从业人员的传染危害,制定了防控措施;创立了规模化生产“环境性疫病学说”;提出了舍微生物气溶胶既是环境质量指征,又是病原传播感染媒介的学说。 (2)阐明了源于畜禽舍的微生物气溶胶向场舍外扩散,在国际上首次把基因组学技术应用于畜禽舍的微生物气溶胶溯源鉴定。采用PFGE、ERIC和REP-PCR对牧场舍内外环境中分离的指示细菌溯源发现,从牧场舍外下风方向(10-200m)分离的多数微生物来源于舍内空气或粪便(粪便中分离到的与舍内空气中的部分大肠杆菌(鸡舍34.1%、牛栏41.8%)来源相同)。揭示了牧场动物产生的微生物气溶胶不仅在畜禽群内扩散,而且能向场舍外环境传播。首次构建了气源性传染病的传播模式,有公共卫生和流行病学意义。 (3)发现了源于动物体携带毒素基因的病原菌气溶胶的发生与传播。对养鸡猪牛场(共33个)舍内、舍外环境分离的380株气载大肠杆菌携带主要毒素基因的解析发现,鸡舍携带LTa基因的菌株最多为53.85%(63/117)、猪舍携带LTa和STb基因的分别35%和30%、牛舍58.74%大肠杆菌携带1至4种毒素基因。探明了畜禽传染病病原的传播过程。 (4)验证了畜禽饲养中“超级细菌”和泛耐药菌的出现及扩散。应用分子生物技术对养鸡猪牛场舍内、舍外环境分离的426株肠球菌和149株金葡菌耐药基因鉴定,发现了传统的超级细菌:在养鸡场舍内外8株金葡菌为MRSA-耐甲氧西林金葡菌,并携带耐药基因;36株肠球菌携带耐万古霉素vanA或vanB基因。14.55%(62/426)的肠球菌对β-内酰胺酶类抗生素耐药等。揭示了养殖环境耐药菌的产生与传播状况和滥用抗生素导致的危害风险。 (5)确认养殖环境3%-13%气溶胶粒子属于PM2.5。在鸡猪牛舍分别为3.7%、4.9%、13.4%的粒子Dae50<1µm,这些粒子能够到达肺泡,对动物及饲养员的感染危害更大。该结果为养殖环境饲养卫生管理及卫生标准的制定提供参考,丰富了感染理论。 (6)建立了AIV、NDV等病毒气溶胶的发生、传播及感染模型,阐明其气源性传染的机制与风险。
山东农业大学 2021-04-23
复旦大学王红艳/公晓红团队揭示自闭症核心症状的分子机制
复旦大学附属妇产科医院王红艳教授团队/生命科学学院公晓红副教授研究通过遗传改造的小鼠模型解析病源性突变的致病效应,揭示了孤独症核心症状的分子机制。
复旦大学 2022-04-12
关于冷冻电镜解析的人源蛋白酶体组装的变构选择机制
蛋白酶体是细胞用来调控特定蛋白质的浓度和清除错误折叠蛋白质的主要机制,是细胞中最普遍的不可或缺的大型 蛋白复合机器之一,也是迄今为止发现的最大的蛋白降解机器。 蛋白酶体全酶是由盖子 (Lid)和基座(Base)亚复 合体组成的调控颗粒RP(Regulatory Particle)所激活。基座亚复合体在组装过程中最重要的一个步骤是异质六 聚AAA-ATPase环的组装。这个过程至少需要被PAAF1, p28/gankyrin, p27/PSMD9和S5b这四种调控颗粒(RP)组 装伴侣蛋白分子所引导。天然的自由态19S调控复合体的构象存在大量的亚稳定态,并表现出大幅度的局部构象涨 落,使冷冻电子显微镜技术成为解析其结构的唯一手段。利用 冷冻电镜解析人源蛋白酶体全酶的基础上(见PNAS 2016, 113: 12991-12996),利用他们自主开发的基于统计 流行算法的高性能计算软件ROME(见PLoS ONE 2017, 12:e0182130)与优化的冷冻电镜处理方法对p28-RP复合 体细微动态构象进行深度分类,共解析出了1个4.5-? p28绑定的调控颗粒(RP)非AAA的亚复合体,3个近7-? p28 绑定的完整RP结构,1个亚纳米精度下的非p28绑定的完整RP结构以及7个亚纳米精度下的由Rpn1-p28-AAA组成的p28 绑定RP的亚复合体的动态构象。观察到自由态RP调控颗粒中p28-绑定的AAA环并没有组成的闭 环孔状通道,而是自发地在Rpt2-Rpt6和Rpt3-Rpt4界面上形成多个由“开”到“关”的拓扑变构。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 39 40 41
  • ...
  • 50 51 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1