高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
Aigtek西安安泰电子 ATA-3000系列
西安安泰电子科技有限公司 2022-06-01
一种D2D通信中频谱效率最大化的功率分配方法
本发明公开了一种D2D通信中频谱效率最大化的功率分配方法,通过分布式优化蜂窝用户的发射功率、D2D用户对的发射功率,在保证宏用户最低服务质量要求和D2D用户与蜂窝用户的功率限制的情况下最大化D2D用户的频谱效率。在给定蜂窝频带资源的情况下,最大化D2D通信的频谱效率等价于最大化D2D通信的和速率。本方法给出了在任何D2D用户都可以使用所有信道,并且任意信道可以同时被所有D2D用户占用的情况下,最优的蜂窝用户发射功率和D2D链路发射功率。主要用凸近似的方法将非凸问题近似为可求解的凸优化问题,并利用给出的闭式解快速收敛到凸问题的优化解。本发明具有收敛速度快,计算量小,易于实现,结果精度高等优点。
东南大学 2021-04-11
首台氢燃料电池混合动力机车轨道交通大功率燃料电池发电系统
2021 年 1 月 27 日,由西南交大与中车大同联合研制的我国首台氢燃料电池混合动力机车,在中车大同电力机车有限公司成功下线,标志着我国氢能轨道交通技术取得关键突破。该车采用西南交通大学陈维荣教授团队研发的轨道交通大功率燃料电池发电系统,突破了燃料电池混合动力系统集成、系统优化控制以及能量管理等核心技术,电堆采用国际领先、可低温启动的日本丰田金属电堆,这也是燃料电池金属电堆在轨道交通领域的首次应用。该车设计时速每小时 80 公里,满载氢气可单机连续运行 24.5 小时,平直道最大牵引载重超过 5000 吨,在不用改变任何铁路基础线路条件下,可在各类机务段、车辆段、编组站以及大型工厂、矿山、港口等场所执行运转、调车、救援等多用途任务。 陈维荣教授团队自 2008 年起,在我国率先开展氢燃料电池在轨道交通中的应用研究,开拓了氢能轨道交通研究方向。历时十余年的技术攻关,团队突破了大功率燃料电池优化控制、混合动力系统能量管理、故障诊断与寿命预测等关键技术,于 2013 年成功研制我国首辆燃料电池电动机车,并于 2016 年与中车唐山公司联合研制成功世界首列燃料电池混合动力有轨电车,引领了我国氢能轨道交通技术发展。 
西南交通大学 2021-04-13
一种基于模糊概率的光伏电池的最大功率点的跟踪方法
本发明公开了一种基于模糊概率的光伏电池的最大功率点的跟 踪方法。所述跟踪方法包括:以ε为采样间隔,获得 N 个采样点 [ui,P(ui)],i 为小于等于 N 的正整数;其中,ε为 0.05UOC/Ns~ 0.5UOC/Ns,UOC 为光伏电池的开路电压,Ns 为光伏电池的串联数; 通过构造扩散函数 fD 和隶属度函数 fM,求取概率函数 Pro(i),对概率 函数 Pro(i)的结果从大到小排序,并依次选取排序靠前的概率对应的 Xi 的并集作为最大功率点的搜索范围,使得所述排序靠前的概率函数 Pr
华中科技大学 2021-04-14
考虑时空关联与数据隐私性的有源配电网分布式光伏功率预测技术
(一)成果背景 分布式光伏可在用户侧就近安装与消纳,减少因长距离输送带来的线路损耗问题,在新型电力系统建设中发挥着重要作用。2021年6月,国家能源局综合司发布了《关于报送整县(市、区)屋顶分布式光伏开发试点方案的通知》,用以推动分布式光伏高质量发展、支撑新型电力系统建设。在该政策的推进下,分布式光伏容量迅猛增长。截至2021年底,国内分布式光伏装机容量已达到107.5GW,约占光伏总装机容量的三分之一,且其增长速度已经超过了集中式光伏。 (二)痛点问题 对于配电网来说,光伏出力易受天气因素影响,具有极强的随机波动特性,大规模分布式光伏接入,一方面加剧了配电网负荷短时波动,影响电力实时平衡,制约负荷预测精度提升;另一方面,分布式光伏出力特性与负荷特性的不匹配造成其难以消纳,为有源配电网运行管理带来严峻挑战。 对于电力市场交易来说,随着新一轮电力体制改革的持续深入,分布式光伏所有者作为售电商参与市场竞争成为必然趋势。分布式光伏出力的不确定性与短时剧烈波动性,使得分布式光伏电站/售电商难以制定合理的市场交易策略与电力交易合同,面临严重的市场风险。 因此,亟需精准的分布式光伏功率预测,为有源配电网调度运行、分布式光伏消纳,分布式光伏参与电力市场等提供有力数据支撑。 (三)技术方案 1、基于变分模态分解与动态图卷积网络的分布式光伏功率预测 首先利用变分模态分解各分布式光伏复杂出力序列分解为相对简单、波动较小的不同频率子序列,以减小场站间关联关系的挖掘难度。然后,基于分布式光伏场站间时空关联性处于动态变化中的考虑,利用全连接神经网络将各节点特征映射到多维空间,而后利用时域卷积挖掘跨节点关联关系,由此以数据驱动方式挖掘各频率下各场站子序列关联性,有效实现子序列动态图结构的构建。最终,基于可用于非欧式空间结构数据建模的卷积神经网络,将其与动态图结构结合,建立考虑动态时空关联性的图卷积预测模型,针对不同频率下出力子序列分别预测,而后重构得到各场站功率进而获取配电网分布式光伏总功率。 2、基于深度联邦学习的分布式光伏发电功率预测 首先,基于长短期记忆神经网络构建时域自编码器模型,该模型编码器用于提取每个时间步输入的时域特征,而后利用解码器将该特征向量转换为输出序列进行未来时间步的预测,自编码能显著增强长短期记忆神经网络的时域建模能力。而后,利用注意力机制解决其在处理长输入时间序列时会导致解码器面临特征冗余问题,且使模型聚焦于对输出更关键的时域特征。由此,利用注意力自编码预测模型通过对时域特征的有效挖掘实现功率预测精度的进一步提升。 在此基础上,开发了用于分布式光伏功率预测的联邦学习框架,在该框架中,本地用户仅需将本地模型进行共享,无需数据的传输,而后由中央服务器进行模型的聚合以实现用户间信息共享。在各本地场站进行注意力自编码预测模型的训练;在中央服务器,基于联邦平均算法实现各本地预测模型的汇聚、全局模型的生成与下发。在保证数据隐私性的前提下取得与传统集中式机器学习训练近似的预测效果。 (四)竞争优势 1、有效表征广域分布式光伏集群间时空关联特征,实现分布式光伏功率预测精度提升。 当缺乏气象实测或预报数据时,考虑分布式光伏时空相关性可有效提升分布式光伏功率预测精度。现有研究多利用各光伏场站地理距离或者整体出力表征时空相关性。这种静态建模方式在分布式光伏出力模式长期稳定的情况下,可以取得较好的预测效果。然而,易受天气因素的影响,分布式光伏出力极易发生短时波动,因而各场站关联性处于动态变化过程。以恒定的场站间关联关系去考虑这种复杂的集群出力序列,显然无法反映天气影响下分布式光伏出力短时变化,难以实现功率预测精度的有效提升。 所提的基于变分模态分解与动态图卷积网络的分布式光伏功率预测方法,利用数据驱动方式实现挖掘各场站间关联特性的动态实时挖掘。在基础上,考虑到不同模态分量下各场站间关联关系的差异性,将各场站原始功率分解为了相对简单、波动较小的不同频率模态分量,减小关联关系的挖掘难度。 2、有效保证各分布式光伏数据隐私性,且能取得与传统集中式机器学习训练方式近似的预测效果 现有的数据驱动预测方法性能在很大程度上依赖于训练数据的数量,因此大多以一种集中的训练方式实现,即中央服务器汇聚来自各场站的运行数据而后进行模型的训练。然而,这种集中训练的方式会期限数据隐私,使用户信息暴露在公共环境而导致被外部攻击者进行数据分析、行为探测等。此外,在竞争激烈的电力市场中,分布式光伏场站所有者可能不愿共享数据。这些因素使传统模型训练方式难以实现。 所提的基于深度联邦学习的分布式光伏发电功率预测方法,利用注意力自编码模型在本地场站进行建模预测,实现对本地功率时域特征的有效挖掘;利用分散式训练的联邦学习框架,实现各场站预测模型信息共享,有效保证本地用户的数据隐私的同时取得不错的预测效果。 创新点 1、考虑了场站间关联关系的动态性。对于分布式光伏,虽然场站数量众多、分布广泛,但是其位置临近,由于云团运动等气象因素导致的相关性较强。所提方法以数据驱动方式根据网络当前的各场站输入功率进行关联关系的动态表征,实现功率预测精度的有效提升。 2、在保障各分布式光伏站点数据隐私应的前提现实现信息共享。利用自编码结构进一步提升LSTM的时间序列建模能力;利用注意力机制模型聚焦于对预测更关键的输入特征,以此实现时域特征的有效挖掘。在此基础上,利用联邦学习框架聚合各本地模型,实现各站点信息聚合,实现精度有效提升。 市场前景 随着新型电力系统建设目标的推进,分布式光伏装机容量呈爆发式增长。所研成果可应用于配电网负荷预测、用户可调度容量评估、激励型需求响应基线负荷估计等场景中,为高比例分布式光伏有源配电网的安全、经济、高效运行,维持电力平衡等工作提供重要参考。同时,随着分布式光伏逐步参与到电力市场,所研成果可为分布式光伏售电商制定最优的交易策略,签订合理的价格合同提供有力数据支撑。综上所述,所研成果市场前景广阔。
华北电力大学 2023-08-10
一种基于电压信号复合前馈的构网型VSG输出功率解耦方法
本发明公开了一种基于电压信号复合前馈的构网型VSG输出功率解耦方法,涉及电力电子控制技术领域,对构网型VSG功率同步控制的变流器输出电压信号复合前馈实现构网型变流器并网系统及实现变流器输出功率解耦的方法。包括构网型VSG功率控制模块、电网参数检测单元、线路阻抗观测器、虚拟阻抗压降前馈环路以及电压信号二次前馈环路。本发明的复合前馈控制策略结合虚拟阻抗和电压幅值与功角补偿,显著减弱了有功与无功功率的耦合作用,实现了高效解耦,适用于复杂电网环境。
南京工程学院 2021-01-12
一种电子信息处理器
成果描述:本实用新型公开了一种电子信息处理器,包括支架、主机和声卡,所述支架的一端设有液晶显示屏,且支架的另一端设有底盘,所述主机的上方设有键盘和鼠标,所述主机的一侧固定安装有散热孔,且主机的另一侧固定安装有开关,所述主机的底部设有主板,所述主板的上方固定安装有CPU处理器,所述声卡的一侧设有硬盘,且声卡的底部固定连接主板,所述硬盘的一侧设有内存条,所述硬盘的一端设有消音板,所述主机的下方固定安装有底座。本实用新型所述的一种电子信息处理器,设有消音板,声卡和硬盘,能够有效减少主机工作时发出的噪音,且能高效的处理和储存各种电子信息,适用不同工作状况,带来更好的使用前景。市场前景分析:本实用新型所述的一种电子信息处理器,设有消音板,声卡和硬盘,能够有效减少主机工作时发出的噪音,且能高效的处理和储存各种电子信息,适用不同工作状况,带来更好的使用前景。与同类成果相比的优势分析:国内领先
成都大学 2021-04-10
一种钼酸锂纳米棒电子封装材料
简介:本发明公开了一种钼酸锂纳米棒电子封装材料,属于电子封装材料技术领域。本发明钼酸锂纳米棒电子封装材料的质量百分比组成如下:钼酸锂纳米棒65‑80%、聚乙烯醇8‑12%、脂肪醇聚氧乙烯醚羧酸钠0.05‑0.5%、异丙醇铝4‑8%、微晶石蜡4‑8%、水3‑7%,钼酸锂纳米棒的直径为50‑100nm、长度为1‑3μm。本发明提供的钼酸锂纳米棒电子封装材料具有绝缘性好、耐老化及耐腐蚀性能优良、导热系数高、热膨胀系数小、易加工、制备过程简单及制备温度低的特点,在电子封装材料领域具有良好的应用前景。  
安徽工业大学 2021-04-11
电子科技大学-国星宇航
成都国星宇航科技有限公司是一家全球领先的商业AI卫星网络公司,在国家双创政策的支持下,2018年5月,由原卫星及应用领域高校、科研院所、行业应用及部队领军人才创办。国星宇航成功研制发射了全球首颗AI卫星,截至2019年8月,国星宇航已顺利完成5次太空任务,成功研制并发射了8颗AI卫星。国星宇航攻克了单星智能化、多星网络化、运控自动化等关键技术,构建了完全自主可控的全球领先全栈AI卫星网络技术体系,THZ星间通信网络技术体系,拥有AI卫星大脑系统、THZ卫星通信系统、多功能交互卫星整星研制、移动智能运控网络、星时代AI星座组网、星云大数据平台等核心能力,形成了防务级、城市级、行业级、消费级等多层级产品,致力于实现“记录历史,直播地球”的美好愿景。
电子科技大学 2021-04-10
电子科技大学成都学院
电子科技大学成都学院是国家教育部批准成立的独立学院,是由电子科技大学与成都国腾实业集团合作创办,采用新模式新机制举办的以本科教育为主的全日制普通高等学校。学校创建于2001年,位于IT、电子类企业云集的国家级高新技术产业开发区——成都市高新西区,下设7个学院,50余个专业,在校学生17000余名。学院专业以工学和管理学为主,以电子信息和计算机类专业为核心,涵盖理、工、经、管、文、艺术、体育、设计和航空等多学科门类。学校立足成都,辐射全国,以建设人民满意、社会认可、持续发展的高水平应用科技大学为目标,为学生提供多元教育服务,为其成人、成才和终生自主发展奠定良好基础;为服务区域经济社会发展,培养“厚基础、重实践、会创新、能成长”的高素质应用型人才和技术领军人才。历史沿革● 2001年7月16日,电子科技大学国腾软件学院成立。● 2001年9月13日,电子科技大学国腾软件学院正式开学。● 2002年5月,电子科技大学国腾微电子学院成立。● 2003年7月14日,电子科技大学国腾软件学院与电子科技大学国腾微电子学院合并,成立“电子科技大学国腾学院”。● 2004年2月23日,电子科技大学国腾学院更名为电子科技大学成都学院,并被教育部确认为独立学院。办学特色●坚持不渝地建设一支课堂教学效果好、指导学生实践能力强的“双师型”教师队伍●千方百计、不拘一格地为学生搭建实践平台,始终把提高学生能力和综合素质放在第一位●因材施教,分层次培养培养目标●培养“厚基础、重实践、会创新、能成长”的高素质应用型人才和技术领军人才。办学理念● 坚持“一个宗旨”:以学生为本,以学院长远发展为重● 贯彻“三个面向”:面向行业,面向社会,面向未来● 办好“四类专业”:在传承电子科技大学电子信息人才培养优势的基础上,办好电子信息和计算机类核心专业,经济管理与人文类专业,游戏、动画、艺术设计与体育类专业和航空航天类专业。
电子科技大学成都学院 2021-02-01
首页 上一页 1 2
  • ...
  • 67 68 69
  • ...
  • 110 111 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1