高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
金属尾矿制备建筑微晶玻璃
该系类成果是对建筑装饰材料——微晶玻璃制备方法的创新。大大降低了微晶玻璃生产中的能耗,提高了产品的机械强度、耐久性和晶化程度。微晶玻璃制备的达到国际领先水平。成果获2012年度辽宁省科技发明一等奖,2006年度辽宁省技术发明二等奖,2001年辽宁省科技进步二等奖,并拥有金属尾矿建筑微晶玻璃的制备方法(发明专利号:ZL 2004 1 0087656.8)和金属尾矿建筑微晶玻璃及其一次烧结制备方法(发明专利号:ZL 2008 1 0012165.5)两项专利技术。
沈阳理工大学 2021-05-04
金属表面阻燃隔热陶瓷涂层
本项目是以无机溶胶为基料,添加适当的纳米无机物,经低温固化得到的具有阻燃、隔热、耐磨性能的陶瓷涂层。在阻燃方面,可用于高层建筑、密封的空间以及地铁、动车内饰钢板和铝合金板的防火隔热。对于环境密闭,设备集中、人员密度大的场所,一旦发生火灾,救护很困难。一些重大火灾事故调查表明,在火灾丧生的人员中,大部分不是直接被烧死,而是被有机物燃烧放出的毒烟熏死或熏晕后烧死的。本项目研制的陶瓷涂层具有遇火不燃、无烟、不产生有毒气体,过火时间可达到3h以上,使得钢构件或铝合金不被软化,以便给消防人员充足的救护时间。可根据需要制作成各种颜色,平时起装饰作用,遇火时起阻燃作用。在耐热方面,可用于金属管路的耐高温热流的冲刷、钢和铝合金构件的隔热、热流输送管路的保温隔热等。
沈阳理工大学 2021-05-04
大块金属玻璃功能结构材料
大块金属玻璃(Bulk Metallic Glasses)是国家863高技术计划、国家973计划、国家自然科学基金和科技部中瑞大块金属玻璃国际合作项目,主要包括: 高比重高性能Zr基大块金属玻璃及其纤维增强复合材料; Al基超强大块金属玻璃或纳米晶合金; Zr基、Al基或Fe基大块金属玻璃耐磨、耐蚀轴承套环状零件制造技术; 大块金属玻璃合金设计的“多元短程序畴过冷”设计软件。 这些大块金属玻璃和技术具有许多独特性能和广阔的应用市场,主要有:(1)更为优异的力学性能,如高强度、高弹性和高断裂韧性等,是目前已发现的最为优异的高尔夫球拍材料之一;(2)大块金属玻璃/纳米晶复合材料是目前世界上比强度最高的材料之一,在航空、航天工业中具有极为广阔的应用前景;(3)良好的加工性能。例如,La系非晶合金延伸率可达15000%,可方便地进行各种超塑性加工;(4)优良的化学活性,是极好的化学反应催化材料。(5)更为优良的抗多种介质腐蚀的能力,可在一些更为恶劣的环境下长期使用;(6)优良的软磁、硬磁以及独特的膨胀特性等物理性能,可作为传统材料的优秀替代品。
北京科技大学 2021-04-11
金属超薄板小孔冲压专用模架
随着科技的不断进步,许多电子产品、数码产品体积应时代潮流,向体积小、重量轻的方向纵深发展,与此相适应,所选用的金属板料也越来越薄,有的达到0.05mm;板上的孔尺寸越来越小,甚至小于板料自身的厚度,数量也越来越多。这类件都有一个共同特点:料薄、孔小、密集、产品表面质量要求高,板形有严格要求。冲压时凸模强度较差,很容易引起折断,同时,料比较薄,冲压时板料在压料力作用下容易变形,废品率较高。为此,本项目采用了一种新型的金属超薄板小孔冲压专用模架——气压产生压料力、可拆卸式滚柱体外导向和滑动内导向结合的双重导向、超薄压料板、超短凸模和负压出废料的新结构,可以较好解决这些问题。 技术指标: 该专用模架为从事金属薄板料(小于0.3mm)冲压制造的企业提供了一种稳定、可靠的标准件,提高了薄料件冲压的生产效率和产品质量,降低了成本。 采用该模架的优点(1)凸模长度小于15mm,比普通冲压模具凸模长度(大于45mm)缩短3倍,大大提高了凸模的刚性,减少凸模折断可能性。(2)整个模具的高度比普通冲压模具尺寸减少20%,可节约模具材料成本30%;(3)整个模具采用双重导向,且采用滚柱体导向,模具寿命可提高2~3倍,成品率达99%以上。 该专用模架为金属薄板料密集小孔的高效、高精密、高质量的冲压,提供了一种稳定、可靠的结构,避免了采用其他特种加工方法效率低、孔质量差、成本高的缺陷,同时该技术也可以扩展到薄膜材料领域,也填补了薄料冲压缺乏专用模架的空白。
上海理工大学 2021-04-11
新型重金属离子吸附材料
在十月召开的十七届五中全会上,党中央多次强调了:“建设资源节约型、环境友好型社会;发展循环经济,加大环境保护力度,加强生态保护体系建设,增强可持续发展能力。”这说明,当前我国环境治理工作的重要。发展循环经济,除了资源节约,更重要的是环境友好,因为这涉及到子孙后代的健康和国民身体素质的优劣。随着我国经济的快速发展,环境的污染越加严重,特别是有毒重金属的污染不仅蔓延到江河湖泊地下水,也已渗入到植物、动物,因此通过食物、药物已影响到国民的健康及生命。有毒重金属污染的治理较为理想的方法是:即可去除污染的重金属,使污染的水达标排放;又可将重金属资源循环再利用;其三,用以处理重金属的材料也可循环多次使用,从而达到“三循环”,实现最大资源化。本成果可根据具体污染源,设计专一性的重金属离子吸附材料,该材料可高效专一性吸附所涉重金属离子,使污染水质达标排放后,所吸附的重金属离子可选择性解吸附使重金属离子资源回收再用,而所用吸附材料也可再生重复使用。应用领域: 废水中重金属离子的吸附与回收利用
南京工业大学 2021-04-13
非金属板翅式换热器
一、 成果简介石墨改性碳纤维增强聚四氟乙烯板翅式换热器,采用石墨改性碳纤维增强的聚四氟乙烯制成。该换热器可用于石油化工、制药、冶炼等行业中有特殊要求(如强酸、强碱等)的冷凝、冷却、加热等多种工艺操作中。该产品已申请发明专利,年产800台规模,设备投资需100万元。二、 结构板翅式换热器是由翅片由翅片、隔板、封条组成,是在金属平板(称为隔板)上放一翅片,然后再在其上放一金属平板,两边以封条密封而组成一个通道。对各个通道进行不同方式的叠置和排列,钎焊成整体,就可得到板翅式换热器板束。为使流体分布更加均匀,在流道的两端部均设置导流片,并在板束两端配置适当流体出入口分头和接管,组成完整的板翅式换热器。
南京工业大学 2021-04-13
金属防腐蚀缓蚀剂的开发
1、油田用环保型缓蚀剂针对油田系统研制成功的环保型钼酸盐系的复合缓蚀剂NJUF系列,在实验室采用静动态实验在温度为室温至80℃、转速为168r/min、pH值为3~8.6的条件下测试,复合缓蚀剂的缓蚀效率均达90%以上,性能优于国内使用的多数缓蚀剂,能够适用于各类盐水泥浆的防腐要求。目前已分别在江苏油田高盐分环境,胜利油田高矿化度、高酸性环境,新疆油田的砂土环境中应用,通过现场分析和了解,该系列的缓蚀剂的使用效果良好,有效延长了管道、污水储罐、钻具、钻杆等设备的使用寿命,提高了装置的使用安全性,得到了现场工程技术人员和油井公司的认可。2、重防护涂料用复配型缓蚀剂针对高湿、高盐、高温等严重的腐蚀环境,如:海洋环境中的各类装备、风电、船舶、集装箱、钢结构、石化等领域,研制了使用于氯化橡胶、丙烯酸聚氨酯和环氧氟碳等涂料的复配型缓蚀剂。涂层加入缓蚀剂后的抗老化时间延长1倍以上,可以显著改善现有涂料防护性能。如目前在某公司氟改性脂肪族丙烯酸聚氨酯涂料中加入1~2%的NJAI-5缓蚀剂,可使涂层体系的耐盐雾试验超过4000h,具有超长的耐候性(人工气候老化和人工辐射暴露4500h未出现起泡、生锈、开裂、脱落、粉化等现象)。目前该技术已申请了一项国防发明专利。
南京工业大学 2021-04-13
铜铝双金属复合材料
项目简介铜铝双金属复合材料是一种在铝材的一面或者两面复合一层铜板带的复合材料。这种复合材料不仅具有铜材导电、导热性能好,接触电阻低,电镀容易以及大气美观等优点,而且兼具铝材的质轻、散热性能优良、经济等特点,广泛应用于电子、通讯、电器、电力、散热、汽车、建筑装饰、生活用具等领域。本成果创新采用低温液-固复合技术生产铜-铝复合材料,解决了铜与铝复合时容易形成金属间化合物,铜与铝界面结合强度低,容易出现开裂的问题;实现了铜-铝复合材料的焊接,解决了焊接接头容易出现脆性化合物的问
江苏大学 2021-04-14
金属/陶瓷耐磨、抗冲击复合部件
金属/陶瓷复合材料或部件一定程度上可以充分发挥两类材料的性能优势,如陶瓷材料的高强、高硬、耐磨损等特性和金属材料的高韧性和高延展性,使得其在磨损、承载和抗重载冲击等服役环境下得到长寿命使用。陶瓷增强体的均匀性及其在使用过程中的可靠性将会直接影响复合材料或部件的使用性能。目前,陶瓷增强体单元主要有陶瓷颗粒、陶瓷纤维、多孔或网络陶瓷预制体等。陶瓷颗粒、纤维和晶须增强相为最常见的增强体,但存在在服役过程中增强相经常会出现易脱落的问题,从而大大降低使用寿命。近年来,本课题组致力于金属/陶瓷耐磨
江苏大学 2021-04-14
发表纳米金属间化合物
用一锅湿化学法制备了新型的三元金属间化合物-PtSnBi纳米盘。双球差电镜表征表明三种金属原子均匀有序地分布。得益于三种金属的协同作用,PtSnBi纳米盘的甲酸氧化性能明显优于二元PtBi和PtSn金属间化合物。其中,Pt
南方科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 40 41 42
  • ...
  • 775 776 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1