高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
关于蛋白质机器动力学的研究
泛素-蛋白酶体体系(Ubiquitin-Proteasome System,简称UPS)是细胞内最重要的蛋白质降解通路,对维持生物体内蛋白质的浓度平衡,以及对调控蛋白、错误折叠或受到损伤的蛋白的快速降解起着至关重要的作用,参与了细胞周期、基因表达调控等多种细胞进程,由UPS失常引发的蛋白质新陈代谢异常与众多人类重大疾病直接相关。2004年,Aaron Ciechanover, Irwin Rose和Avram Hershko三位科学家被授予了诺贝尔化学奖,以表彰他们对该降解通路的发现。UPS中蛋白酶体是细胞中最基本的、最重要的不可或缺的、最为复杂的大型全酶超分子复合机器之一,人源蛋白酶体全酶包含至少33种不同的亚基,总原子质量约为2.5MDa。美国FDA批准的多种治疗癌症的药物分子即以蛋白酶体为直接靶标。近年来,随着冷冻电镜技术的发展和应用,人们对这一大分子机器的结构和功能研究得以不断深入。2016年,毛有东课题组与合作者报道了人源蛋白酶体基态的3.6Å冷冻电镜结构及其他三个亚纳米分辨构象,并首次发现一个亚稳态构象的核心颗粒(Core Particle,简称CP)底物转运通道处于开放状态(见PNAS 2016, 113: 12991-12996)。2018年4月,该课题组又报道了6个ATPγS结合状态下的26S动态结构,包括三个CP开放态对应的亚稳简并态近原子分辨(4~5Å)结构(见Nature Communications 2018, 9: 1360)。尽管这些工作揭示了蛋白酶体的基本架构和内在运动行为,但由于缺乏蛋白酶体与底物之间的相互作用,人们对于蛋白酶体如何实现底物降解的原子水平工作机制仍一无所知。此外,尽管冷冻电镜技术近年来广泛应用于分析具有动态特征的蛋白复合体结构和平衡态构象,但对其中间态结构和非平衡构象分析的分辨率水平往往局限在4~6埃或更低,离真正的全原子水平动力学分析还有相当一段距离。 为了真正实现原子水平的蛋白酶体底物降解动态过程的冷冻电镜三维重建和动力学表征,毛有东课题组攻克了两大技术难题。其一,如何在蛋白酶体完成底物降解之前抓到它的所有可能的中间态构象?课题组发展了一种新颖的核酸置换法,利用ATPγS降低AAA-ATPase激酶水解活性的特点,在底物降解中间过程,通过将ATP快速置换成ATPγS,结合快速冷冻的优势,从而扑捉到蛋白酶体在底物降解过程的中间态。其二,如何在从冷冻电镜数据中分析出更多构象的同时,还把分辨率做到3埃甚至更好?课题组通过多年持续努力,发展了多种基于人工智能和机器学习的冷冻电镜图像聚类的新型算法,并针对蛋白酶体的动力学特征,设计了一套极其有效的整合了多种算法的多构象分类流程。通过这两套技术方案的完美结合,课题组成功解析了人源蛋白酶体在降解底物过程中的七种不同的、但差别甚微的、高分辨原子水平的天然态构象(Native states),完整展示了蛋白酶体从泛素结合到去泛素化,再到底物转运的动态过程。与同期在Science上发表的与底物结合的酵母蛋白酶体的4.2-4.7埃冷冻电镜结构(Science doi: 10.1126/science.aav0725,来自加州伯克利分校和Scripps研究所)相比,该Nature论文不仅总构象数量多一倍,全部构象分辨率还高1-2埃。由于Science论文采用了抑制Rpn11去泛素活性的策略,其非天然态结构中底物并不能真正自由转运,所推测的机理仅限于底物转运这一步,对于其他三大Nature论文所回答重要问题均无法给出答案。这体现了该Nature论文不仅在实验方法的原创性上和数据分析水平和质量上,更在科学发现和问题探究的深度和广度上大幅超越了来自Science的竞争性论文。图一 七个利用冷冻电镜解析的精细原子结构完整揭示了从泛素识别、去泛素化反应、转运启动和持续降解的核心功能动态过程。 作为整个蛋白酶体的动力来源与运转核心,AAA-ATPase激酶分子马达展现出了三种不同的核苷酸水解协作模式,6个ATPase亚基协调工作,交替与底物发生相互作用。在去泛素化过程(EB态)中,处于对立位置的两个ATPase亚基Rpt2与Rpt4水解ATP,而Rpt5与Rpt6则释放ADP,ATPase内的底物转运通道被打开,使得底物可以进入轴心通道;与此同时,去泛素化酶Rpn11亚基与泛素及底物发生相互作用,执行其作为去泛素化酶的功能;在转运起始过程(EC态)中,相邻的两个ATPase亚基Rpt1与Rpt5会同时水解ATP,调控颗粒(Regulatory Particle,简称RP)发生大规模转动并释放泛素;在底物去折叠与转运过程(ED态)中,三个相邻的ATPase亚基会分别同步进行ATP的结合、ADP的释放与ATP的水解,这一过程会单向传递下去,将ATP水解释放的化学能转换为机械能,使得相应的ATPase亚基发生刚体转动,推动底物的去折叠和单向输运,同时CP的转运通道入口打开,底物被送入通道中进行降解。这些研究结果为几十年来对蛋白酶体功能的研究提供了宝贵的第一手原子结构和动力学信息,对于理解生物体内蛋白质的降解过程和一系列负责物质输运的ATPase马达分子的一般工作原理具有极为重要的科学意义。
北京大学 2021-04-11
微腔非线性光学研究中的重要突破
北京大学物理学院“科技部极端光学创新研究团队”肖云峰研究员和龚旗煌院士领导的课题组利用超高品质因子回音壁模式光学微腔,极大地增强了表面对称性破缺诱导的非线性光学效应,得到的二次谐波转换效率提升了14个数量级。相关研究成果在线发表在《自然•光子学》(Nature Photonics)上,文章题为“Symmetry-breaking-induced nonlinear optics at a microcavity surface”。左图:表面二次谐波效应示意图;右图:光学微腔增强表面非线性效应。 二阶非线性光学效应是现代光学研究与应用中最基本、最重要的非线性光学过程之一,被广泛地用于实现频率转换、光学调制和量子光源等。由于结构反演对称性的限制,常用的硅基光子学材料往往不具备二阶非线性电偶极响应。借助材料的表面或界面,这种反演对称性可以被打破,进而诱导出二阶非线性光学响应。然而,传统的表/界面非线性光学研究存在两个重要挑战:一是非线性转换效率极低,即使在高强度的脉冲光激发下也仅能产生极少量的二阶非线性光子;二是体相电四极响应严重地干扰表面对称性破缺诱导的非线性信号分析。 该项工作中,北京大学课题组利用超高品质因子回音壁光学微腔极大增强光与物质相互作用的优势,在二氧化硅微球腔中获得了高亮度的二次谐波和二次和频信号。为了充分发挥微腔“双增强”效应,研究人员发展了一种动态相位匹配方法,利用光学微腔中热效应和光学克尔效应的相位调制,高效地实现了基波和谐波信号同时与微腔模式共振。实验上获得的二次谐波转换效率达0.049% W-1,相比传统表面非线性光学,该效率增强了14个数量级。左图:实验获得的激发光和二次谐波光谱图;右图:动态相位匹配过程二次谐波功率变化。 研究人员进一步通过对基波偏振和二次谐波模式场分布的测量分析,成功提取得到只有表面对称性破缺诱导的非线性信号,排除了体相电四极响应的干扰。这种表面对称性破缺诱导的非线性信号有望作为一种超高灵敏度的无标记“探针”,用来检测和研究材料表面分子的结构、排布、吸收等物理与化学性质,为表面科学研究与应用提供了一个全新的物理平台;同时,该项研究发展的动态相位匹配机制具有普适性,可进一步推广到不同材料、不同形状的光学谐振腔中,有望在非线性集成光子学中发挥重要作用。 研究论文的共同第一作者是张雪悦和曹启韬同学,现分别在美国加州理工学院应用物理系和北京大学物理学院攻读博士学位,通讯作者为肖云峰研究员。论文合作者包括新加坡国立大学仇成伟教授和王卓博士、清华大学刘玉玺教授、圣路易斯华盛顿大学杨兰教授等。 研究工作得到了国家自然科学基金委、科技部、人工微结构和介观物理国家重点实验室、量子物质科学协同创新中心和极端光学协同创新中心等的支持。
北京大学 2021-04-11
发现治疗新冠肺炎药物靶点的研究
浙江工业大学张文教授团队正攻关浙江省科技厅关于2019-nCoV应急科研项目,与浙江省疾病预防控制中心合作,帮助解决目前针对新冠肺炎无特效药的临床问题。张文教授团队自2014年H7N9禽流感疫情发生以来,就开始研究流感和冠状病毒致病机制,以及针对病毒的靶向药物开发。 张文团队早在2014年开始,就陆续开展针对SARS-CoV、MERS-CoV、塞卡、埃博拉(CoV)冠状病毒,以及H7N9甲型流感病毒、某些H1N1亚型甲型流感病毒的抗病毒药物研发。他们发现,在这些病毒入侵的宿主细胞,有种丝氨酸蛋白酶TMPRSS2(Ⅱ型跨膜丝氨酸蛋白酶(TTSP)),它可能就是我们要找的“魔术剪刀”,换个角度来说,也就是一个极佳的抗病毒药物靶点。2017年,张文团队在公开发表的文献(Biochimie, 2017, 142, 1-10)中,对冠状病毒侵入宿主细胞进行病毒复制的过程进行了详细阐述。 SARS-CoV冠状病毒进入宿主细胞可能通过的两个途径:途径1,冠状病毒与宿主细胞受体(对2019-nCoV的受体是血管紧张素转化酶II,ACE2)结合,以內吞的形式进入宿主细胞,形成胞内体,在这过程中刺突蛋白被组织蛋白酶活化。由于胞内体pH值下降致使病毒包膜与胞体内膜的融合,并将病毒遗传基因RNA释放到胞浆中,然后进行RNA转录、复制和转录。新的病毒RNA被转运至内质网、高尔基体中间部位组装的地方。在这里由宿主细胞合成的无活性的刺突糖蛋白(spike protein)必须由丝氨酸蛋白酶TMPRSS2剪切为有活性的片段,包装在病毒上。然后,RNA和结构蛋白组装并发芽成囊泡;囊泡被转运到细胞表面并在TMPRSS2帮助下释放。途径2,刺突糖蛋白(spike protein)可以在细胞表面在TMPRSS2帮助下被激活,导致病毒膜与宿主细胞质膜融合。TMPRSS2在高尔基体或质膜上,无论是在病毒组装过程中还是在附着和释放过程中,都发生了对刺突糖蛋白的剪切,这也确保了新病毒的活性。TMPRSS2激活SARS-CoV会干扰干扰素诱导的跨膜蛋白(IFITMs)对SARS-CoVS的抑制作用,IFITMs是一类干扰素诱导的宿主细胞蛋白,可抑制几种包膜病毒进入。 所获得的证据表明,TMPRSS2在SARS-CoV感染中发挥着重要作用。团队前期研究发现TMPRSS2基因组里有一段序列能特异性地与团队优选的合成小分子先导化合物作用,下调TMPRSS2基因表达,从而在宿主细胞中能抑制病毒复制、增殖。图2为团队筛选的部分小分子化合物。团队正加快新冠肺炎防治药物科研攻关的研究进程,争取在2020年3月-12月在新结构分子和老药筛选方面有阶段性实质成果,为疫情防控阻击战贡献工大力量。
浙江工业大学 2021-04-10
新冠病毒如何侵染人体细胞的研究
2月21日凌晨,西湖大学周强研究团队在论文预印本网站BioRxiv再次发文,报道新冠病毒表面S蛋白受体结合结构域与细胞表面受体ACE2全长蛋白(以下简称ACE2)的复合物冷冻电镜结构,揭开了新冠病毒入侵人体细胞的神秘面纱。研究发现,新冠病毒感染人体细胞的关键在于冠状病毒的S蛋白与人体ACE2的结合。准确地说,是S蛋白“劫持”了原本是控制血压的ACE2,通过与它的结合入侵人体。一个人体细胞的蛋白,怎么会与病毒发生联系?西湖大学特聘研究员陶亮用了一个形象的比喻:“如果把人体想象成一间房屋,把新冠病毒想象成强盗,那么,ACE2就是这间房屋的‘门把手’;S蛋白抓住了它,病毒从而长驱直入闯进人体细胞。”虽然S蛋白和ACE2是敌我双方接触的最前线,但在此次疫情暴发前,科学家们从未看清ACE2的全貌及ACE2与新冠病毒S蛋白的相互作用。两天前,周强实验室在世界范围内率先报道了ACE2的高分辨三维空间结构,这一次,他们进一步解析出ACE2与新冠病毒S蛋白受体结合结构域的复合物结构。
西湖大学 2021-04-10
抗病毒类似物前药的研究
中国科学技术大学化材学院研究团队敏锐地意识到,“核苷类似物”抗病毒药物的高效规模量产,在疫情阻击战中将具有十分重要的意义。 目前抗击新冠肺炎试用的多种抗病毒药物,都离不开核苷类似物这一类关键物质。然而,核苷类似物前药在实际合成中存在合成步骤复杂、总产率低、多个药物中间体提纯需要使用柱色谱分离等问题,极大地限制了其规模级制备。目前已知的全球核苷类似物原料药库存量十分有限,一旦新冠病毒全球大规模爆发,势必造成对核苷类似物原料药的紧急需求,而目前已知的生产工艺均无法实现核苷类似物原料药的低成本高效量产。 经过刻苦攻关,科研团队另辟蹊径,成功实现了高纯度核苷类似物原料药的核心步骤无柱层析合成工艺开发和公斤级规模的实验室合成;部分工艺技术已转移给相关药企,并用以进一步的工艺放大。团队发展的三嗪碘化物中间体的简便合成工艺,已提交发明专利申请,疫情期间将免费授权给相关企业。攻关团队已为近十个兄弟院校和科研机构无偿提供了核苷类似物样品供抗病毒相关基础研究。   攻关小组起初根据文献报道进行试验,每个组负责不同药物分子中间体的合成。然而,之前报道的合成方法,核心步骤产率低而且需要柱层析步骤。问题在于:柱层析环节会限制合成规模;对于这个关键难题,攻关小组克服困难,反复试验,终于另辟蹊径,通过优化后处理工艺,规避了柱层析操作;在若干关键步骤上,实现了收率和反应规模上的工艺突破。目前,攻关团队已实现了系列抗病毒类似物前药的实验室合成;针对极具临床治疗前景的核苷类似物前药,已能实现公斤级规模的实验室制备,工艺路线适合进一步放大以进行工业化生产。
中国科学技术大学 2021-04-10
SARS-CoV-2的分型和传播研究
2020年3月5日,浙江大学、中山大学和圣路易斯大学合作,在medRxiv上上传了题为Genomic variations of SARS-CoV-2 suggest multiple outbreak sources of transmission 的研究成果成果,共分析了169个SARS-CoV-2基因组,发现根据突变位点(以MN938384.1为基准点的8750,、28112和 29063三个位点)主要可以分为两个类型,I型和II型。在29063位点的基础上,I型可以进一步分为IA 型和 IB 型。遗传学分析表明,IA型最可能是祖先型,II型可能由I型进化而来,在感染中占主导地位。结果表明,II型可能是SARS-CoV-2在武汉华南市场疫情的源头,而I型引起的疫情应该发生在其他地方,因为患者与市场没有直接联系。此外,通过分析三个基因组位点,区分I型和II型毒株,作者发现三个位点中的两个位点的同义变化比I型毒株具有更高的蛋白质转化效率,这或许可以解释为什么II型占主导地位,这意味着II型比I型更具传染性(可传播)。这些发现对目前的流行病预防和控制可能很有价值。点击查看原文
浙江大学 2021-04-10
基于AI 机器学习的影像组学模型研究
2019年12月以来,由SARS-CoV-2病毒感染导致的新型冠状病毒疾病(COVID-19)在全球开始蔓延。报道显示,SARS-CoV-2感染患者的中位住院时间为10天,而武汉患者在发病10天后症状有可能加重。因此,住院时间是COVID-19临床预后的重要指标之一。 目前,CT影像学已成为COVID-19肺炎的诊断和监测工具,主要表现为磨玻璃影、实变及混合密度影。然而,现阶段的影像学研究主要集中于对病灶的定性和半定量描述,缺乏对病灶的全定量分析。因此,基于前期提出的CT定量监测COVID-19肺炎病程,团队假设在CT病灶背后的高通量影像特征“隐藏”了患者预后转归的“秘密”。 本研究纳入了兰州、安康、丽水、镇江、临夏5家新冠肺炎定点医院,自2020年1月23日到2月8日期间住院患者的临床资料和首次CT资料,所有患者经RT-PCR证实SARS-CoV-2病毒感染。至2月20日,研究共纳入31例治愈出院的患者(排除14例未出院患者和7例首次CT检查无肺炎表现患者),并将10天作为住院时长的二分类阈值。基于有限的样本量,团队将4个中心作为训练队列,另外一个中心作为验证队列。通过自动分割肺叶和半自动分割病灶,31名患者中累计分割出72个病灶。在对病灶图像预处理后,提取影像组学特征并筛选。为了研究影像组学特征的稳定性,团队使用了Logistics回归模型和随机森林模型对筛选的特征分别进行建模和验证。​结果发现,6个筛选出的二阶特征在两种不同分类器中均表现出良好的预测价值。在外部测试队列中,Logistics回归模型的AUC为0·97(95%CI 0·83-1·0), 敏感性 1·0, 特异性0·89;随机森林模型的AUC为0·92 (95%CI 0·67-1·0),敏感性 0·75, 特异性1·0。随后,研究又纳入了2月20日-28日新出院的6名患者,利用已建立的影像组学模型可以正确预测所有6名患者的住院时间。 
东南大学 2021-04-10
求解非线性规划的滤子方法研究
线性规划问题在实际生活中有着广泛的应用,随着经济和计算机技术的发展,作为最优化方法的一个重要分支,非线性规划方法在经济、工业、国防等国民经济和社会发展的各领域都有广泛的应用。但是在非线性规划中,有一些理论问题没有解决,有些新的方法有待进一步完善,特别在当前大数据背景下,传统的算法已经不能适应新的需求(如问题的数据量庞大且带有特殊结构,Jacobian矩阵计算困难等)。因此,一方面需要对原有的算法理论进一步完善,另一方面,需要研究在大数据背景下的优化算法的理论和实际计算效果。 本项目考虑把NCP函数和滤子方法相结合,利用对偶信息,减弱收敛的条件,提高计算效果。其次,针对滤子方法、SQP方法各自的不足之处,考虑将其同其它算法结合并利用数值代数技术,如与序列线性方程组方法相结合,以减少其计算量,可以克服原约束优化算法的一些缺点。最后,考虑一些带有特殊结构的大规模优化问题,如约束Jacobian计算困难或Jacobian结构特殊,利用数值代数技术对模型降阶并设计合适的优化算法。简言之,在现有的滤子方法的研究结果基础上,拟利用数值代数(如Krylov子空间方法)和滤子技术提出一些解决约束非线性规划问题的新方法,完善它们的收敛性分析和其它理论分析,提高它们的计算效果。这不仅在滤子方法等数学规划理论与算法方面有所贡献,而且在经济、工程、科学计算领域也具有重要的应用价值。 该项目已获国家自然基金项目立项支持。
上海电力大学 2021-04-29
供应链成本分配的权变结构研究
600年来地球是圆的,而现在地球则是平的.目前国际分工呈现出垂直专业化分工趋势,供应链成本管理成为理论与实务界广泛关注的问题.本论文所研究的供应链成本分配则是供应链成本管理的核心基础.近十年来,经济全球化和产品内国际垂直分工极大改变了世界制造业的生产格局与竞争基础,供应链之间的竞争成为新的竞争模式,供应链成本分配和供应链成本管理愈来愈得到理论界和实务界的关注.
南京审计大学 2021-04-28
新冠肺炎确诊病例的CT特征研究
2020年1月31日,兰州大学第一医院2019-nCoV研究团队在国际放射学首位期刊Radiology(IF 7.608)发布了学术成果:2019-nCoV确诊病例的CT特征;同步推送全球放射医师,关注新型冠状病毒肺炎的CT影像学表现。2019-nCoV科研攻关专家组组长、兰州大学第一医院院长李汛教授正在带领科研团队,紧密围绕2019-nCoV流行病学特点、快速诊断技术、诊疗模式、中药防杀与治疗、防控体系构建与感控指南建立、消毒与废物处理六个方面进行全方位研究。医院第1例病例确诊后,雷军强教授作为第一作者将其典型的影像学特征在国际顶级放射期刊报道,助力抗击新冠病毒肺炎工作的进行。 兰州大学第一医院院长助理祁小龙教授、雷军强教授及其放射科团队将围绕“基于智能影像技术的重大公共卫生事件防控体系构建”开展科研攻关,紧密配合一线医护团队开展2019-nCoV疫情的早筛、早隔、早诊和早治。
兰州大学 2021-04-10
首页 上一页 1 2
  • ...
  • 115 116 117
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1