基于时空多尺度联合学习模型的能源需求预测技术
本项目提出了将时间维度与空间维度相结合的多尺度综合能源 需求分析与预测模型,设计并实现了一种面向智慧城市的综合能源需 求分析与预测的方法,提升能源供应规划和营销策略的优化与决策支 持。 项目特色: 面向综合能源时空数据的需求分析和预测可以根据历史数据, 结合地理区域的相互关系来预测给定时间范围和空间位置的 能源需求。 针对综合能源的特性,项目提出了联合学习和迁移学习的思想 对模型进行训练。同时优化不同区域中多种类型能源的联合预 测模型,将已有模型的结果迁移到训练集数据不足的模型中, 提高能源用量预测的准确率。 面向智慧城市的综合能源信息应用服务场景,并利用 GIS 技术 实现配电网分析和用户用电特性分析的可视化。
南开大学
2021-04-13