高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
天威诚信 · 高等院校解决方案
天威诚信高等院校解决方案切实解决高校盖章工作繁重问题,保障高校系统人员及信息安全、真实,助力智慧校园建设。      【需求痛点】 分支学院多,盖章耗时久 高校一般有众多学院及分支机构,且多不在同一地区,加盖公章文件需带回主校区盖章,加上领导签字审批需要3-10天,遇上领导出差则更久。 盖章数量多,成本消耗大 高校师生众多,盖章文件量巨大,数据统计高效每年因盖章而产生的纸张、打印、快递等费用达上百万,长期以往造成巨大成本消耗。 系统不智能,劳动负荷大 大部分高校系统不能实现线上盖章,导致线下盖章工作量大,尤其招生及毕业期间盖章工作可能持续几个月之久,不满足建设智慧校园目标。 安全性能差,信息不安全 传统高校系统使用口令认证方式,安全级别低,且无法确定操作者真实身份,存在信息泄露及非法登录可能;不能对系统内信息实现防篡改功能,不能避免重要文件恶意篡改事件发生。   【解决方案】 | CA认证体系 将高校系统传统“用户名+密码”的口令认证方式更改为基于数字证书的可靠CA电子认证方式,对所有登录及操作者身份认证,实现线上身份与线下身份一一对应。 高校OA 教务系统 财务系统 人事系统 学生工作管理 图书馆系统 邮件系统   | 电子签章 高校系统内使用电子签章方式进行签名、盖章,可批量化处理,提升审批及盖章效率,不受地点、时间限制。 证书发放 证明文件 毕业就业和实习 日常教学文件 奖励和学生申请表 校园公告 学科分类 学科申报与公告、教师奖励等签名盖章   【方案价值】 确保身份真实安全 通过数字证书保障系统使用者身份真实,与线下一一绑定对应,防止非法登录。 提升审批盖章效率 通过CA管控对系统使用者权限分配,实现线上审批及盖章,让盖章不受地点、时间限制,可快速线上完成。 节约教学办学成本 大大节约了纸张等印刷、快递成本,解放人员线下审批、盖章时间成本,让师生将更多精力投入到学业中。 保障信息真实可靠 通过电子签名技术,保障系统内电子成绩单、毕业证、校园公告、招标通知等文件信息真实防篡改。
北京天威诚信电子商务服务有限公司 2022-12-01
海洋高分子微球的微流控制备方法及其应用
中国发明专利ZL202210046308.4:采用无乳化剂、无有机交联剂的微流控法制备规整球形的海洋高分子微球,微球实心或空心、粒径(200纳米-50微米)、微观结构可控可调,可作为吸附材料、药物香精等载体材料的应用。
厦门大学 2025-02-07
关于自旋超流基态的研究
研究小组首先利用激光分子束外延技术生长了具有原子级别平整度的反铁磁Cr2O3薄膜,是电荷的绝缘体。采用非局域自旋输运的技术,用热方法在铂电极和Cr2O3薄膜界面注入自旋流、产生自旋压,在另外一个铂电极处利用铂的自旋霍尔效应测量自旋流的输运(图A)。实验数据显示在低温下自旋输信号出现饱和现象,对应着自旋导的饱和,也就是零自旋阻效应;即自旋超流基态的最重要基本性质之一(图B)。在此基础上,该研究小组又系统研究了不同自旋输运距离下自旋超流的输运现象,证明了自旋在该自旋超流基态可以进行长距离的输运,并且其随输运距离的关系与自旋超流态输运理论预言一致(图C)。该工作是是自旋超导态领域研究的一项重大突破,势必推动自旋超导态的快速发展,为研究基于自旋玻色子的玻色爱因斯坦凝聚的基础物理研究提供了实验平台,并为新型量子自旋器件,如自旋流约瑟夫森结等,奠定了实验基础。图:自旋超流基态的重要实验证据。(A)非局域自旋输运测量示意图。用热方法在左边铂电极和Cr2O3薄膜界面注入自旋流,在右边铂电极处利用铂的自旋霍尔效应测量自旋流的输运。(B)自低温下自旋输信号出现饱和现象,反映出自旋超流基态的零自旋阻效应。(C)自旋信号随其随输运距离的关系与自旋超流态输运理论预言一致。
北京大学 2021-04-11
一种初期雨水弃流装置
本实用新型提出了一种初期雨水弃流装置,包括井体、进水管、弃流管和出水管,井体侧壁上端设有进水口,井体内中部设有隔板,且隔板的最高端不高出进水口,隔板将井体内部分隔成过滤腔和弃流腔,且过滤腔设置在井体靠近进水口一侧,井体侧壁上设有与过滤腔连通的出水口以及与弃流腔连通的弃流口,过滤腔内填充有砂层,井体内靠近进水口处并位于砂层上方设有活性炭层;进水管与进水口连通,弃流管与弃流口连通,出水管与出水口连通。本实用新型能够将小流量的雨水资源通过过滤等方式净化其水质,加以利用;通过纱布网对活性炭层进行固定,以防止
安徽建筑大学 2021-01-12
一种可扩展的套管型微流控芯片的制备方法
本发明公开了一种可扩展的套管型微流控芯片的制备方法,包括以下步骤:S1:将与通道尺寸匹配的预置物放入PDMS预聚物中,加热聚合PDMS,裁成PDMS块;S2:将预置物移除,留出放置通道的管槽,管槽具有两个管口;S3:使用倒角打磨后的点胶针筒,在PDMS块垂直于管槽的方向上开通孔;S4:将PDMS块开孔的两面分别与基底和顶层键合,其中顶层预置有加样孔;S5:从管槽的一个管口插入内径均匀的毛细玻璃管,从管槽的另一个管口插入预拉尖的毛细玻璃管,完成单级套管型微流控芯片的制作;S6:复用所述毛细玻璃管,重复步骤S5,形成多级套管结构。本发明有效降低了套管型微流控芯片制作的操作难度和经济成本。
东南大学 2021-04-11
超高分辨柔性流场感知系统
与高速飞行的飞机不同,微小型无人机体积小,重量轻,飞行速度低,更容易受到环境湍流的影响,需要高灵敏度的小型气流传感器提供全面的空气动力学信息。如何让微小型无人机像鸟类一样感知和操纵气流一直是航空和传感器领域的难题。 面向微小型无人机的飞行参数测量,北航研发团队研制出一种基于氧化钒的高灵敏度柔性流速传感器,实现了0.11 mm/s和0.1°的超高流速和角度分辨力,实验验证了攻角、侧滑角和空速的多参数感知能力,并完成了微小型无人机飞行速度以及机翼微振动的测量,为微小型无人机提供了低成本、高精度的大气参数传感方案。 该传感器基于量热式原理,由中心微加热器产生恒定温差,四周的热敏电阻阵列测量温度分布,根据热敏电阻阵列测得的温度差准确反映流速大小及方向。采用悬空型隔热结构以及高电阻温度系数材料氧化钒作为热敏电阻以增大传感器的测量灵敏度。在聚酰亚胺基底上通过MEMS工艺加工了总厚度90μm的超薄柔性流速传感器,实现了微小型无人机的曲面贴附功能。经风洞测试,流速传感器的理论分辨力达0.11 mm/s,流速测量重复精度约为测量值的0.5%,响应时间约为20ms。在10 m/s时,流速传感器的最大角度灵敏度为36.7 mV/deg,噪音水平为1.78 mV,根据2σ准则计算出其理论角度分辨力为0.1°。 研究团队已经完成流速传感器工程化样品的制备,并将两个流速传感器装载到一个微小型无人机平台上进行飞行参数感知应用。结果表明平均飞行速度的估计误差低于0.2 m/s。由于流速传感器的高灵敏度特性,它甚至捕捉到了机翼的微振动信息,并与外置IMU模块显示了相同的机翼振动频率。这项研究展示了一种柔性高灵敏度流速传感器,拓宽了流场感知在微小型无人机姿态检测、空速估计以及飞行安全监测方面的应用,为无人机的飞行参数测量提供了创新的设计思路与发展前景。
北京航空航天大学 2024-07-08
一种面向多核集群的数据流编译优化方法
本发明公开了一种面向多核集群系统的数据流编译优化方法,包括:确定计算任务与处理核映射的任务划分与调度步骤;根据任务划分与调度结果构造集群节点间和集群节内核间的流水线调度表的层次流水线调度步骤;根据所述多核处理器的结构特性、集群节点间的通信情况和数据流程序在多核处理器上的执行情况做做基于 cache 的缓存优化步骤。本发明的方法结合了数据流程序与系统结构相关的优化技术,充分发挥高负载均衡性以及同步与异步混合流水代码在多核集群上的高并行性,而且针对多核集群上的缓存与通信方式,对程序的缓存访问和通信传输进
华中科技大学 2021-04-14
一种深井脉冲电容器的恒流充电系统
本发明公开了一种深井脉冲电容器的恒流充电系统,包括设置 在地面上的第一装置、电缆、设置在井下的第二装置和脉冲电容器。 第一装置将工频 220V 交流电源变为中频高压交流电源,然后经电缆将 其传输到第二装置,第二装置再将此中频高压电源变成所需的高压直 流电源直接对脉冲电容器充电。脉冲电容器的电压通过电阻分压器来 实现测量,控制程序通过脉冲电容器电压的增量计算平均充电电流, 并通过调节逆变电路中开关管的驱动脉宽来改变平均充电电流,形成 闭环控制,实现平均充电电流的恒定。本发明采用闭环控制方法,实 现了深
华中科技大学 2021-04-14
一种双头口镜
本实用新型包括一种双头口镜,包括口镜手柄和位于口镜手柄前端的口镜头;所述口镜头为两个;所述口镜手柄内沿长度方向设置有吸引通道,吸引通道内设置有光导纤维;所述口镜头表面设置有防雾 层。本实用新型的口镜具备了自动吸引、照明和多方位反映牙体影像的功能,为口腔医师的操作提供了 便捷,使得临床操作更为精准和安全,实用性强;本实用新型结构简单,使用方便,采用生物安全性高、 具良好耐腐蚀性能不锈钢
武汉大学 2021-04-14
院校综合数字化经营(营销)融合应用实训实践中心建设方案
希润数字技术(武汉)有限公司 2024-12-06
首页 上一页 1 2 3 4 5 6
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1