高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种移动环境下基于可扩展编码的视频点播系统
本发明公开了一种移动环境下基于可扩展编码的视频点播系统, 包括视频点播请求模块、视频自适应调整模块和视频源处理模块,视 频源处理模块用于视频源的接入、预处理与 SVC 编码,生成分层视频 文件,视频点播请求模块产生视频点播请求,并将移动终端的设备参 数及接收数据的网络状况反馈给视频自适应调整模块,视频自适应调 整模块根据反馈对分层视频文件按需进行分辨率或码率的提取,提取 后的视频文件解码后即可在移动终端进行播放。实施
华中科技大学 2021-04-14
可扩展试验箱
可根据不同需求,增加湿度、光照、紫外控制系统; 高清触摸屏,程序化多段数设计; 自带数据管理功能; 自带事件管理功能; 变频式制冷系统; 控温范围:-10℃-85℃
上海博迅医疗生物仪器股份有限公司 2021-02-01
“泊立方”可扩展云端停车平台
高校科技成果尽在科转云
西安交通大学 2021-04-10
一种可自动折展的可扩展箱式房
本发明涉及箱式房技术领域,公开一种可自动折展的可扩展箱式房,包括底板、顶板、两个侧板以及两个墙板,两个侧板相互远离的一侧设置均有顶升机构,顶升机构两端分别与底板、顶板连接,顶升机构包括与底板、顶板共同连接的剪叉杆,剪叉杆上安装有电缸,电缸伸展时带动剪叉杆竖向伸长,剪叉杆带动顶板竖向上升。通过顶升机构以及卷扬机构的驱动,折叠状态下的箱式房可自动展开至房屋构型,实现了箱式房折展运动的自动化,从而能够有效降低安装难度,提升安装效率,同时折叠状态下的箱式房更加便于运输,从而降低使用成本,丰富了适用场景。
南京工业大学 2021-01-12
12.1"酷睿可扩展pci工业平板电脑
产品详细介绍12.1"酷睿低功耗带2pci扩展工业平板电脑,该嵌入式工业电脑主频是双核intel 1.2GHZ CPU,并可扩展为intel 双核1.83GHZ CPU的嵌入式工业电脑; 该工业电脑为超薄无风扇工业平板电脑,是一款真彩带触摸屏嵌入式工控机,可扩展2xPCI,前置1 X USB2.0端口,前置状态指示灯,硬盘XYZ三轴全向专业减震设计.(特价销售12.1寸酷睿无风扇超薄工业平板电脑,12寸嵌入式工业电脑型号hif102cr)北京微电达公司专营嵌入式工业电脑,专营工业平板电脑,专营低功耗工业平板,专营带pci扩展工业平板,专营超薄嵌入式平板电脑,专营无风扇工业平板及低功耗工业平板电脑oem定制设计。
北京微电达电子技术有限公司 2021-08-23
一种面向 SMD 的可扩展智能仓储系统
本发明公开了一种面向 SMD 的可扩展智能仓储系统,包括存料 架组件、料盒组件、机械手组件、输送带组件以及检测区组件等,其 中料盒组件包括一系列依序排列的料盒,并通过转动链组件安装在所 述存料架组件上实现循环输送,各个料盒的前门和后门分别通过弹簧 铰链在非存取料状态下保持封闭,并且为前门还配备有防止其开启的 C 型锁销;机械手组件包括触开杆、取料机械手和存料机械手,并通 过对料盘前后门以及 C 型锁销的作用来实现存取料操作。通过本发明, 能够以结构紧凑、便于操控的方式实现对现有 SMD 仓库中多料盘
华中科技大学 2021-04-14
一种可扩展的重复数据检测方法
一种可扩展的重复数据检测方法,属于计算机存储技术领域, 解决现有重复数据检测方法中存储容量无法高效扩展的问题,以适应 存储需求扩大,重删系统面临升级换代的现状。本发明包括分块处理、 指纹提取、布隆过滤器检索、指纹子集表检索、未满布隆过滤器判断、 新指纹标记、布隆过滤器数量判断以及布隆过滤器阵列扩展步骤。本 发明采用布隆过滤器阵列来检索指纹数据,可快速定位检索范围,提 高检索效率,实现重复数据的检测,具有高扩展性、高查
华中科技大学 2021-04-14
融合架构的高时效可扩展大数据分析平台
大数据应用的多样化 需要的计算模型、数据模型多样化; 目前每类模型需要单独的开源系统来支持(如HDFS、HBase、Neo4j、MongoDB,Flink,Spark,Tensorflow等)。 多系统导致大数据分析平台非常复杂、效率低下。研究目标:研究和开发面向新型多计算模型融合架构的、高时效、可扩展的新 一代大数据分析支撑系统与工具平台FAST(Fusion-Architecture, Scalable, Time-efficient big data analysis platform)。针对目前大数据分析平台复杂、效率低下的痛点,该系统具有三个 方面的优势:首先,这套系统采用融合架构,一方面实现关系、图、键 值、文档等多种数据模型的高效融合,另一方面实现批处理计算、流计 算的深度融合,并可以通过SQL扩展语言来进行多模型的统一查询,实现高效的跨模型查询。其次,对于复杂系统来说,时效性非常重要,这 套系统采用融合架构提高效率是实现高时效的基础,更重要的是,我们 对大数据分析从数据到用户进行了端到端的全栈时效优化。最后,对于 大数据应用来说,系统扩展性非常重要,本系统在资源层、存储层和计 算层进行了全面的扩展性优化。下面在融合架构、高时效和可扩展这三 个方面,分别详细介绍FAST系统的三个主要亮点。融合架构FAST系统的第一个亮点是融合架构,我们在技术方面的创新主要包 括多数据模型融合和多计算模型融合两方面。多数据模型融合:设计和研发了多模型数据管理与查询引擎,支持关系、图、键值、 文档等多种数据模型,实现了查询解析、查询优化、元数据管理、数据 分布等功能,将多种数据模型进行统一管理和深度融合。同时扩展了SQL语言,通过统一的查询接口支持对关系、键值、图、文档等数据进行独立访问或者跨模型查询。经过试验,多模型数据融合查询,比Spark 2.3.4的查询时间能平均减少70.7%。目前spark等现有系统还需要手工编程方式来实现跨模型查 询,所以FAST系统在易用性上也表现良好,降低使用门槛,提高开发效率。多计算模型融合:在计算层实现了最常见的批处理计算和流计算深度融合,批流融合的核心方法是在系统内部实现批和流的统一表达,批是对有限数据集 的运算,流是对无限数据流的计算,我们设计了UCollection结构对批和 流数据进行统一表达,通过识别的bounded标志,来确定是批、流、或批流融合。有了统一表达,可以开展一系列融合优化来提升系统性能。 并且对上通过Unified API统一用户的批、流接口,实现二者在编程范式上的统一表达。对于批流混合的计算,融合架构系统的查询延迟比Flink 1.4.2能减少57%,吞吐量平均可以提升到6.72倍。高时效FAST系统的第二个亮点是高时效,即缩短大数据分析的时间消耗, 提高效率。由于大数据分析平台是一个非常复杂的系统,为了做到高时效,系统不能存在性能短板,因此需要对大数据分析的整个过程进行端到端的全栈时效优化。如图中所示,自下而上,需要在多模态存储、批流融合、机器学习、人工操作各层都进行优化。对于多模态存储,面向应用负载和异构硬件特征进行自适应优化;对于批流融合计算,在统一表达基础上,进行系列融合优化技术, 包括DAG优化、迭代优化、部署优化、操作符优化等;在机器学习层面,进行模型优化、消息优化、梯度优化、概率优化 等来提高时效;而且我们也考虑到大数据分析过程中用户人工操作的时效性问题, 通过智能地进行大数据分析方法和模型的推荐,来缩减人工操作的 时间。可扩展FAST系统的第三个亮点是可扩展,由于大数据应用规模很大,数据增速快,对系统可扩展性的要求非常高,为此我们在系统的资源层、 存储层和计算层进行了全面的扩展性优化。在资源层,系统都部署在云计算的虚拟化资源之上,利用了云计算资源的弹性机制进行系统扩展。并在系统中实现了可伸缩调整模块, 能实时监控软硬件系统的状态,按照应用需求来自适应地进行弹性伸缩。在存储层,分布式存储系统扩展性的关键在于分布式共识和一致性 协议(Raft),因此提出了KV-Raft、vRaft等进行Raft的扩展优化。在计算层,我们扩展了机器学习模型的参数规模,使系统可以支持 到百亿级别的超大规模机器学习模型训练,并且性能方面有明显提 升。亮点成果:融合架构大数据分析平台目前已经在阿里巴巴双十一进行示范应用。 从2020年11月10日至11月16日一周的时间,在阿里的生产环境中,研发 的系统一直连续稳定运行,基于淘宝和天猫的实际用户信息进行大数据 分析,综合运用了本系统的存储、计算、机器学习等多个模块的能力, 累计进行了184亿件商品推荐。同时在双十一期间,基于智能交互向导技术,也面向电子商务应用 的卖家提供了“生意参谋”应用,基于大数据分析,帮助卖家分析产品 销量变化的原因,以及促销的有效手段等。
中国人民大学 2021-04-10
融合架构的高时效可扩展大数据分析平台
研究背景:  大数据应用的多样化  需要的计算模型、数据模型多样化;  目前每类模型需要单独的开源系统来支持(如HDFS、HBase、Neo4j、MongoDB,Flink,Spark,Tensorflow等)。  多系统导致大数据分析平台非常复杂、效率低下。 研究目标: 研究和开发面向新型多计算模型融合架构的、高时效、可扩展的新 一代大数据分析支撑系统与工具平台FAST(Fusion-Architecture, Scalable, Time-efficient big data analysis platform)。 针对目前大数据分析平台复杂、效率低下的痛点,该系统具有三个  方面的优势:首先,这套系统采用融合架构,一方面实现关系、图、键  值、文档等多种数据模型的高效融合,另一方面实现批处理计算、流计  算的深度融合,并可以通过SQL扩展语言来进行多模型的统一查询,实现高效的跨模型查询。其次,对于复杂系统来说,时效性非常重要,这  套系统采用融合架构提高效率是实现高时效的基础,更重要的是,我们  对大数据分析从数据到用户进行了端到端的全栈时效优化。最后,对于  大数据应用来说,系统扩展性非常重要,本系统在资源层、存储层和计  算层进行了全面的扩展性优化。下面在融合架构、高时效和可扩展这三  个方面,分别详细介绍FAST系统的三个主要亮点。 融合架构 FAST系统的第一个亮点是融合架构,我们在技术方面的创新主要包  括多数据模型融合和多计算模型融合两方面。 多数据模型融合: 设计和研发了多模型数据管理与查询引擎,支持关系、图、键值、  文档等多种数据模型,实现了查询解析、查询优化、元数据管理、数据  分布等功能,将多种数据模型进行统一管理和深度融合。同时扩展了SQL语言,通过统一的查询接口支持对关系、键值、图、文档等数据进行独立访问或者跨模型查询。 经过试验,多模型数据融合查询,比Spark 2.3.4的查询时间能平均减少70.7%。目前spark等现有系统还需要手工编程方式来实现跨模型查 询,所以FAST系统在易用性上也表现良好,降低使用门槛,提高开发效率。 多计算模型融合: 在计算层实现了最常见的批处理计算和流计算深度融合,批流融合的核心方法是在系统内部实现批和流的统一表达,批是对有限数据集  的运算,流是对无限数据流的计算,我们设计了UCollection结构对批和  流数据进行统一表达,通过识别的bounded标志,来确定是批、流、或批流融合。有了统一表达,可以开展一系列融合优化来提升系统性能。 并且对上通过Unified API统一用户的批、流接口,实现二者在编程范式上的统一表达。对于批流混合的计算,融合架构系统的查询延迟比Flink 1.4.2能减少57%,吞吐量平均可以提升到6.72倍。 高时效 FAST系统的第二个亮点是高时效,即缩短大数据分析的时间消耗,  提高效率。由于大数据分析平台是一个非常复杂的系统,为了做到高时效,系统不能存在性能短板,因此需要对大数据分析的整个过程进行端到端的全栈时效优化。如图中所示,自下而上,需要在多模态存储、批流融合、机器学习、人工操作各层都进行优化。 对于多模态存储,面向应用负载和异构硬件特征进行自适应优化; 对于批流融合计算,在统一表达基础上,进行系列融合优化技术, 包括DAG优化、迭代优化、部署优化、操作符优化等; 在机器学习层面,进行模型优化、消息优化、梯度优化、概率优化 等来提高时效; 而且我们也考虑到大数据分析过程中用户人工操作的时效性问题,  通过智能地进行大数据分析方法和模型的推荐,来缩减人工操作的  时间。 可扩展 FAST系统的第三个亮点是可扩展,由于大数据应用规模很大,数据增速快,对系统可扩展性的要求非常高,为此我们在系统的资源层、  存储层和计算层进行了全面的扩展性优化。 在资源层,系统都部署在云计算的虚拟化资源之上,利用了云计算资源的弹性机制进行系统扩展。并在系统中实现了可伸缩调整模块,  能实时监控软硬件系统的状态,按照应用需求来自适应地进行弹性伸缩。 在存储层,分布式存储系统扩展性的关键在于分布式共识和一致性 协议(Raft),因此提出了KV-Raft、vRaft等进行Raft的扩展优化。 在计算层,我们扩展了机器学习模型的参数规模,使系统可以支持  到百亿级别的超大规模机器学习模型训练,并且性能方面有明显提  升。 亮点成果: 融合架构大数据分析平台目前已经在阿里巴巴双十一进行示范应用。  从2020年11月10日至11月16日一周的时间,在阿里的生产环境中,研发 的系统一直连续稳定运行,基于淘宝和天猫的实际用户信息进行大数据 分析,综合运用了本系统的存储、计算、机器学习等多个模块的能力, 累计进行了184亿件商品推荐。 同时在双十一期间,基于智能交互向导技术,也面向电子商务应用  的卖家提供了“生意参谋”应用,基于大数据分析,帮助卖家分析产品  销量变化的原因,以及促销的有效手段等。
中国人民大学 2021-05-09
计算资源可伸缩的视频编码传输优化技术
本技术成果是主要针对视频编码新标准HEVC或H264优化技术集合,其中包括一个已授权的专利和若 干正在申请的专利
中山大学 2021-04-10
1 2 3 4 5 6
  • ...
  • 44 45 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1