高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
配网调度方式自动化管理系统
项目研究的背景及用途:配电网是电力系统的重要组成部分,其安全、可靠运行是整个电力系统安全、可靠运行的重要保障。与输电网不同,配电系统要从变电站、馈电线路一直延伸到企业、商业和居民用户,配电设备名目繁多,数量巨大、且线路及设备的增改频繁,因此管理任务十分繁重。传统的手工作业管理方式不仅工作繁杂,劳动强度大,难以适应配电网高速发展和配电自动化的需求,而且容易引发事故,给用户带来重大的经济损失。利用飞速发展的计算机和现代信息技术进行配电网的科学运行与管理,及时进行数据采集、状态监视、网络分析(包括校正性控制和恢复供电),提高工作质量和工作效率,消除隐患,更好地保证电网安全、可靠运行,将对电力部门和全社会有着深远的社会和经济效益。 我们在了解了供电公司的调度、用电和变电部门的实际情况基础上,为顺应电力企业在市场情况下,对各项管理工作自动化水平和关键数据保护安全性要求不断提高的趋势,将最新的计算机技术和网络技术引入到日常的调度运行管理、方式操作等工作中,使不同的供电公司的调度运行管理上一个新的台阶。系统实现网上数据和图形发布,可以实现远程查询和管理,为今后地理信息系统的推广使用打下资料基础。技术原理及流程:调度方式自动化管理系统,能够管理不同电压等级的线路资料和运行情况,能够完成日常调度运行方式的各种管理工作,能够完成运行线路的拓扑着色、拓扑追寻;可以和 SCADA 系统互联实现数据共享。采用客户机/服务器方式的分层分布式结构,在软件开发方面采用面向对象编程技术,整个软件模块化、开放式。具备网上发布功能,可以通过 WEB 浏览功能查看图形的切改和数据的变更等功能。 异地备份系统,实现系统数据和图形的异地自动备份,以便在主服务器受到致命破坏后,利用异地备份恢复数据和运行。成果水平及主要技术指标:项目的开发是从 1993 年开始的,并经过多年的艰苦努力和潜心研究,现已开发完成了一套较完善的配电网管理与分析系统。在软件的开发过程中,为了保证所开发软件的实用性,项目组一直与国内电力行业的一些配电网分析和管理部门保持着密切地合作关系,在电力生产部门拥有多个具体合作伙伴。所开发系统的每一项功能都得到了实际配电网运行管理部门的考核,从而充分保证了系统实用性。同时,在系统开发过程中,项目组投入了多名教师、博士研究生和硕士研究生,在广泛收集国内外最新文献及深入现场进行调研的基础上,时刻跟踪配网分析与计算机新技术的发展,在模型算法及所采用的计算机技术方面保证了系统的先进性。该系统通过了天津市科委组织的成果鉴定,获得 1998 年天津市科技进步二等奖。市场分析及效益预测:该系统开发完成后可以广泛地用于城市的各区局配电网和县级配电网,应用前景非常广阔。项目投入使用后,可以有效提高供电公司内部管理的自动化水平和效率。 1998 年 7 月,国家电力公司为了贯彻国务院指示,召开了“推进城网建设改造工作会议”,提出在 3~5 年内将投资 2500 亿用于城乡电网改造,并强调“城网建设改造做好规划”。另外随着配网改造的进行,采用信息技术对配电网进行科学的管理和分析,对配电系统的安全可靠运行,提高管理水平,降低损耗具有重要意义。本项目正适应了这一需要,因此无论是城市电网,还是农村电网都需要本产品,随着我国经济的飞速发展和技术的进步,该系统的市场还会进一步加大,市场前景非常广阔。
天津大学 2021-04-11
智能自动化非损伤微测系统
“NMT界乔布斯”许越先生推荐创新平台 中关村NMT产业联盟推介成员单位创新产品  “全球抗疫,人人有责” 推出背景:        非损伤微测技术(NMT) 源自1974年美国海洋生物学实验室(MBL,Marine Biological Laboratory)的神经科学家Lionel F. Jaffe提出原初概念,到1990年成功应用于测定细胞的Ca2+流速,已经解决了众多科学问题。2001年,中国学者许越先生与Dr.Jaffe以美国扬格公司 (YoungerUSA, LLC) 为依托,进一步完善系统功能和用户体验,初步形成了现代NMT的雏形。        非损伤微测技术(Non-invasive Micro-test Technology, NMT)是通过测定活体动植物组织、细胞与内/外环境间Ca2+/Cd2+/Na+/K+/NO3-/NH4+/O2...交换量的实时变化,揭示基因功能的一种新技术。目前已被103位诺贝尔奖得主所在单位,以及北大/清华/中科院使用。        非损伤微测系统已经经历了多代的更新,从最初实验室自行搭建的设备,到现在商业化的设备与售后,非损伤微测系统还将继续升级,满足更多科研人员的需求。 应对挑战: 非损伤微测系统已经实现了数据自动化的检测,但随着技术需求的提高,对于进一步的自动化,减少人员操作问题是需要拓展的 检测标准的一致性是人工操作经常出现的问题,如检测位点的确定等等 解决方法: 智能非损伤微测系统提供了智能化图像识别技术,对于样品检测时自动化的定位,有着至关重要的作用 智能非损伤微测系统能够进行智能化的点位选取与检测,让标准更加的固定 智能非损伤微测系统配备高清触摸屏,使操作更加便捷,为今后便携式的设备打下基础 功能特点 1.基本功能: 1.1智能寻位检测,无需人工操作 1.2采用智能化图像识别技术 1.3活体、原位、非损伤检测 1.4检测指标:Ca2+、H+、K+、Na+、Cd2+、Cl-、NH4+、NO3-、Mg2+、Pb2+、Cu2+ 1.5配备高清触摸显示屏,操作便捷   2.性能参数: 2.1工作电压:220V 2.2流速最高检测灵敏度:10-12mol·cm-2·s-1 2.3浓度最高检测灵敏度:10-6M 2.4最短检测周期:5s 2.5智能检测可选点位范围:5μm-1000μm 2.6智能检测可选点位数量:不限 2.7传感器最小运动距离:1μm   3. AIFluxes软件参数: 3.1智能识别流速传感器 3.2支持多点位智能检测 3.3智能捕捉样品图像 3.4可直接输出流速、浓度数据和折线图,无需额外换算
旭月(北京)科技有限公司 2021-08-23
XO-Dlab 数字化探究实验系统
产品详细介绍XO-Dlab 数字化探究实验系统                                                                                                                        咨询QQ:           一、概述         XO-Dlab数字化探究实验系统,是通过引进现代测量技术研制的计算机辅助实验系统,是一种融合传感器技术、数据采集技术及计算机软件技术, 共同完成对信号量测量的装置。能够进行物理、化学、生物及环保科学等综合理科实验,是进行探究性学习的有效工具,是高中新课程标准(新课标) 教材配套实验室组成的基本单元。                                                                                二、产品特点     XO-Dlab数字化探究实验系统包括:数据采集器、传感器、系统分析软件、实验教程、探究实验课程设计五个部分组成。 (1)系统特点: ● 能够在很短的时间内采集和处理大量的实验数据,使实验结果更真实,并大大提高了实验效率。 ● 能够检测信号量的微小变化和瞬间变化,使实验的研究范围大大扩展。如进行电容充放电实验和电磁感应实验的研究。 ● USB计算机接口。 ● 多通道并行采集数据。 ● 传感器和采集器之间采用标准网线接口。 ● 实用性:结合新课程改革,满足新课标,新教材的实验要求。 ● 探究性:配套探究实验课程设计,充分体现探究性学习的宗旨。 ● 包容性:兼顾到传统常规实验仪器的利用,避免重复投资。 (2)分析软件特点: ● 系统软件提供专用分析图表和通用分析图表两种类型的分析图表。 ● 教材中各种实验的分析图表预先集成在专用分析图表中,为课堂实验提供很大的便利性;支持用户开发的实验嵌入到专用分析图表中。 ● 即插即用,软件自动识别传感器。 ● 系统软件支持脱机使用。 ● 强大的显示/分析工具;通过曲线、数字、登记表盘三种方式显示和分析数据。 ● 可随时进行数据的变换或计算,数据采集和数据分析可同时进行。 ● 可自定义计算机表达式的计算机名称,计算机结果可实时显示在图表中。 ● 丰富的图形数据处理能力。 ● 多窗口显示:不同类型的实验数据可在同一屏中最多可分4个窗口显示。 ● 数据拟合:支持7种常见函数公式。 ● 实验曲线可进行截点、变色、隐藏等操作。 ● 实验曲线可分段拟合,多条曲线可独立操作,支持同一图表中不限条数增加曲线,各曲线能独立操作。 ● 实验数据表中的数据与曲线中的点可关联并同步闪动。 ● 实验曲线中的数据点可选择性删除。 ● 实验数据可导出和成Excel格式,分析图表可生成图片。 ● 实验过程数据可保存并可回放。 三、传感器       电流/微电流传感器    量程:-1.0A~1.0A/-10UA~10UA     分辨率:0.01A/- 电压传感器    量程:-15V~15V    分辨率:0.01V 温度传感器    量程:-25~125℃   分辨率:0.1℃ 力传感器    量程:-20~20N    分辨率:0.01N 声音传感器    量程:适应多种教学声源    分辨率:0.0012db 光电门传感器    分辨率:0.01ms 压强传感器    量程:0~300Kpa    分辨率:0.1Kpa 光强传感器    量程:0~600LUX    分辨率:0.2LUX 磁场传感器    量程:-150G~150G   分辨率:100mG 位移传感器    量程:10cm~150cm    分辨率:1mm PH值传感器    量程:0~14PH   分辨率:0.01PH 湿度传感器    量程:0~100%   分辨率:1% 色度传感器    量程:660(红)610(橙)565(绿)468(蓝)    分辨率:0.1% 电导传感器    量程:0~1000us/cm   分辨率:0.1us/cm 溶解氧传感器    量程:0~20mg/L   分辨率:0.01mg/L 气中氧的传感器    量程:0~100%   分辨率:0.1% 二氧化碳传感器    量程:0~5000ppm   分辨率:100ppm 心率传感器    量程:30~200bpm   分辨率:1bpm 根据用户需求,我公司还可设计其它类型的传感器   四、实验项目 物理 实验一、匀变速直线运动的位移 实验二、研究自由落体运动 实验三、加速度与拉力的关系                       实验四、加速度与质量的关系 实验五、弹簧振子的研究                           实验六、阻尼振动 实验七、探究弹力与弹簧伸长量的关系               实验八、静摩擦力 实验九、牛顿第三定律                             实验十、超重与失重 实验十一、做功改变物体的内能                     实验十二、铜丝的热胀冷缩 实验十三、液体蒸发温度下降                       实验十四、玻意耳定律 实验十五、频率与音调的关系                       实验十六、光导现象 实验十七、电容器充放电与串并联                   实验十八、传感器的简单应用 实验十九、整流与滤波                             实验二十、欧姆定律 实验二十一、导体的伏安特性                       实验二十二、描绘小灯泡的伏安特性曲线 实验二十三、探测磁体周围的磁场                   实验二十四、探测直导线周围的磁场 实验二十五、通电螺线管的磁感应强度测量          实验二十六、通电螺线管的磁感应强度与电流的关系   实验二十七、电磁感应现象 实验二十八、微弱磁通量变化时的感应电流           实验二十九、交流电波形 实验三十、自感现象                               实验三十一、RC、RL移相 实验三十二、LC振荡 化学 实验一 收集不同的雨水,测其pH 实验二  探究温度、催化剂对过氧化氢的分解速率的影响 实验三  探究市售食盐中是否含有碘元素         实验四  酸碱中和滴定 实验五  尝试用不同的方法对物质进行分离       实验六  中和反应与中和热的测定 实验七 证明某些化学反应的可逆性              实验八  熔融盐的导电性 实验九  土壤的酸碱度测定                     实验十  电解质溶液的导电性 实验十一  原电池中能量的变化                 实验十二  盐类的水解 实验十三  探究氯化铁水解的条件               实验十四  水质分析 实验十五  物质在溶解过程中的温度变化         实验十六  电解氯化钠、氯化铝溶液 实验十七  探究不同光强对浓硝酸分解的影响     实验十八  乙酸乙酯的水解 实验十九  酶的催化作用                       实验二十  蛋白质的变性 实验二十一  测试鱼肉新鲜度实验               实验二十二  色法测定抗贫血药物中铁的含量 实验二十三  化学反应中温度的变化             实验二十四  比较电解质溶液的导电能力 实验二十五   不同岩石的抗腐蚀能力            实验二十六   氢氧化铝的制取 实验二十七  甲烷、乙烯、乙炔的燃烧           实验二十八  实验室蒸馏石油           实验二十九  探究高热量食品的热值             实验三十   测定不同环境空气中O2、CO2的含量 实验三十一 水体富营养化的探究 生物 实验一  比较过氧化氢在不同条件下的分解 实验二  植物细胞的吸水与失水 实验三  影响酶活性的因素(pH) 实验四  影响酶活性的因素(温度) 实验五  探究酵母菌细胞呼吸方式 实验六  探究光强对水生植物光合作用的影响 实验七  探究温度对水生植物光合作用的影响 实验八  探究CO2对水生植物光合作用的影响 实验九  培养液中酵母菌种群数量的变化 实验十  设计制作生态缸,观察其稳定性 实验十一  探究生物体维持pH稳定的机制 实验十二  探究植物光合作用及呼吸作用与氧气和二氧化碳的关系 实验十三  探究光强对陆生植物光合作用的影响 实验十四  探究温度对陆生植物光合作用的影响 实验十五  探究CO2对陆生植物光合作用的影响 实验十六  探究C3和C4植物光合作用对CO2的利用能力 实验十七  探究光强对阴生植物及阳生植物光合作用强度的影响 实验十八  CO2是光合作用的必要条件 实验十九  探究植物呼吸作用强度 实验二十  种子的无氧呼吸 实验二十一  探究小鱼的呼吸强度 实验二十二  探究不同环境的水质 实验二十三  探究不同环境的空气质量 实验二十四  教室内CO2与O2的变化 实验二十五  动物与植物的相互依赖关系 实验二十六  流域测试 实验二十七  探究水质对小鱼生长的影响 实验二十八  探究不同水质对植物根尖生长状况的影响 实验二十九  细胞大小与物质运输的关系 实验三十  探究蒸腾作用与环境因素的关系  
上海西瓯教学仪器有限公司 2021-08-23
海洋牧场抗风浪全水层平台礁系统构建技术
一、技术背景 东海近岸海域易受台风和风暴潮等不利天气的影响,故建设海洋牧场时需充分考虑人工鱼礁的安全性。该海域传统的人工鱼礁投放以沉底式为主,在以软相泥地为主的区域设置后往往会出现滑移、倾覆和掩埋的现象从而影响鱼礁稳定性和功能的持续发挥。此外,东海区海洋牧场基本以资源养护型为代表,几乎没有产业带动能力。 在此背景下,设计一套既能抵抗强台风又能保证效能的鱼礁系统显得颇为重要,而融入产业服务功能又是维持海域海洋牧场活力的必由之路。为此,上海海洋大学海洋牧场工程研究中心设计团队经过多年酝酿和探索性试验,研发了一套抗风浪全水层平台礁系统构建技术。 二、技术要素组成 抗风浪全水层平台礁系统由锚礁系统和台礁系统两部分组成。锚礁系统通过高强度缆绳连接底部鱼礁和上层筏式构件(图1),形成浮式藻场的着生介质系统。由表层大型天然海藻、养殖海藻和浮游植物共同构成强大的固能传质网络,为海洋牧场资源增殖打下基础。   图1 每20个锚礁构成一个锚礁群(225m×25m)  锚礁系统中形成的能量和物质将通过牧食和碎屑食物链从表层传向底层,发挥海洋生物泵和表底层耦合的综合效应。在锚礁系统区形成的资源增量将通过大型平台礁系统进行回收利用(图2)。 平台礁由高强度钢桩、鱼礁底座、多层圆盘礁、柔性鱼礁和上层镂空廊道五大要素构成(图2)。首先根据地质调查情况确定打桩的数量和深度。钢桩设置好之后,在其上套入鱼礁底座和圆盘礁,使底部周围形成三型鱼类活动的主要生息场。上层柔性鱼礁可作为大型海藻附着基而用,从而增加上层水体空间异质性,丰富微生境格局,为中上层附着生物和游泳生物提供栖息和摄食场所。最后设置上层廊道,为休闲海钓和海上观光等产业活动的融入提供平台。休闲海钓是牧场区鱼类资源回收的主要方式,而企业承包锚礁系统是拓展其海水养殖的重要方式。由此,构建出一套在东海区具有极大推广价值的海洋牧场构建模式(图3)。   图2 大型平台礁系统的结构要素   图3 锚礁系统和台礁系统组合布置后的效果示意图 三、技术创新点 (1)新的鱼礁系统是以初级生产力调控为核心目标,强化表层水体生物群落稳定性、提升生物多样性为重要目标的全水层锚礁系统。该系统通过功能型环保构件的有机结合,营造大规模浮式藻场,形成饵料生物聚集区、幼鱼庇护区、成鱼育肥区和附着生物生长区;并通过生物泵作用影响调控底层水体的能流和物质循环,为增殖底栖鱼类和大型无脊椎动物、优化其群落结构创造条件。 (2)沉底鱼礁的设计根据表层浮礁系统的物理特性和生态功能辐射效能,选用抗沉陷锚式鱼礁和大型平台礁。这两种鱼礁结构均为首创,前者在发挥礁体本身对三型鱼类聚集效果的基础上,同时起到固定上层浮礁构件的锚系作用;后者以钢桩打底、嵌套分层固体构件并环绕柔性构件的方式,在中下层水体形成较大规模的底鱼礁系统。这两种鱼礁系统的设计在工程上以安全和效率为核心,生态上以环保性和可持续性为原则,社会效益上以产业需求为导向,综合构建出适合东海区等高海况海域的全新海洋牧场建设模式。该模式的一大优点是将鱼礁易在淤泥底下陷的缺陷变为功能性优势,以台礁方式避免礁体偏移走位,确保人工生境系统的稳定性,无需进行鱼礁抗滑移倾覆方面的工程核算,提高了工程效率。 (3)以整体打桩方式进行台面立柱布局,礁体穿孔套入钢桩,用热铸法固定圆形钢板控制鱼礁位置,两层钢板相隔1m,可控制组合鱼礁底部的台礁支脚插入底泥层1m左右。这种组合下可实现鱼礁系统抵抗几十年一遇的强台风,使之长时间发挥渔业资源养护和产业服务的功能。
上海海洋大学 2021-05-11
应用于移动平台的语音情感识别系统
结合模式识别及语音情感感知算法,开发了应用于移动平台的语音情感识别系统,该技术具有自主知识产权。该系统能够通过移动终端采集用户的语音信号,经情感建模和识别算法处理后,实时感知用户语音中包含的六种基本情感信息(高兴、悲伤、惊讶、害怕、生气、嫌恶)。系统特点:1、融合说话人无关和说话人相关两种语音情感模型,用以弥补单一模型无法兼顾算法普适性和准确性的不足;2、具备在线及离线两种工作模式,在线模式下,移动设备可以借助服务器获得更为准确的识别结果,并且节省运算资源;3、对移动设备使用环境中的低采样率与低信噪比环境作了针对性优化,保障了识别算法在一般环境下的鲁棒性。 本系统基于北京航空航天大学模式识别与人工智能实验室的多模型融合语音情感识别技术,在移动平台上实现了对说话人情感表达的识别。其能够对说话人相关和说话人无关情形进行相应优化,对于未在系统注册的一般用户,识别准确率为76%;对于已在系统注册的用户,识别准确率可达83%,属于国内外领先水平。对于长度为2s的语音,本系统离线模式下识别时间小于0.5s,在线模式下识别时间小于0.2s。
北京航空航天大学 2021-04-13
基于空中移动平台的高精度位置测量系统
采用无人机搭载相机以及图像处理硬件模块,通过图像识别与跟踪实现对运动员的跟踪、定位功能,并将检测数据通过WIFI传输到数据综合分析系统。
北京交通大学 2023-05-08
新型电力系统数字动模实验平台UREP
新型电力系统仿真分析、测试验证。 一、项目分类 关键核心技术突破 二、成果简介 随着“双碳目标”国家能源战略的确定和新型电力系统概念的提出,我国能源转型力度持续加大,逐步形成了大量新能源接入电力系统的局面。由于风能、太阳能等新能源与常规能源禀性差别很大,其并网发电系统具有显著不确定性、波动性和机械惯量缺失等特点。此外,高比例电力电子装备、新一代直流输电、多能互补的综合能源、各类大规模储能电站、各种通信及自动化新技术装置等因素使得新型电力系统组成要素愈加复杂,动态特性蕴含诸多未知,造成系统规划设计、装备制造、系统集成和运行控制等都面临史无前例的挑战。目前,电力科研院所、规划设计单位、装备制造厂家、教育培训机构等对新型电力系统开展仿真分析、测试验证的需求很大、很迫切。同时看到,新型电力系统的这些新型场景对仿真技术要求苛刻,门槛很高。 1)新型电力系统需要精细化动态模拟。人们对新型电力系统动态行为的认识还不够深入,无论是基础理论层面还是工程技术层面还处于广泛讨论、观点碰撞或局部示范试验阶段。然而,电力设施的新技术路线试错成本极高,不太可能对所有备选方案和技术选项都逐一示范。因此,开展大量深入的仿真研究是推进新型电力系统实施的必要手段。对于新型电力系统,需要深入开展仿真研究的领域包括:①新型电网体系结构研究;②新能源接入电网关键技术; ③ 新能源电网保护与自动化技术; ④源网荷储协同控制与优化调度;⑤新型配电网的电能质量分析与控制;⑥人工智能等新技术对新型电力系统的支撑。 2)新能源基地并网需要做稳定性评估。大规模陆上及海上风电集中接入局部电网有可能引发次/超同步振荡、宽频谐波谐振等电网安全稳定性问题,需要对这些问题进行机理及应对策略分析。所以需要对包含多类型新能源装备的局部电网做精细化动模仿真测试。然而,百千台级风光机组电磁暂态详细建模与仿真是一个卡脖子难题。 3)软、硬件在环仿真是必要的。新能源及储能电站的电力电子变流器控制及保护策略是厂家核心机密,对外不公开。由于控保策略对装置外特性及其接入系统的响应特性有重要影响,故需要分析内部核心控保策略。需要将新能源及储能控制器实物或黑盒模型接入测试平台开展动模仿真,以对其多时间尺度动态响应特性进行精细化分析。软、硬件在环试验对仿真平台提出了更高要求。 4)超大规模储能电站的仿真难度大。①单个储能机组的设备形态发生改变,从两/三电平变流器向模块化多电平变流器(MMC)的复杂结构演变,甚至采用储能跟变流器集成,故需要对这种复杂新形态做精细化测试验证。②超大规模、超大机组的储能电站包含较多并联储能单元或者储能机组,吉瓦时级储能电站,需上百台机组并联。另外,储能变流器的控制策略正从电流源型向电压源型转变,控制策略趋于复杂化,故需要大量的储能变流器的控制装置接入测试平台,才能对实现对储能单机以及多机之间协调控制性能测试,进而实现超大规模、超大机组的储能电站的精细化仿真。 5)现代直流输电控制与保护测试提出更高要求。超/特高压直流输电系统应用于新能源基地外送的控制保护策略及其硬件在环试验对实时仿真平台硬件资源要求苛刻,既要对直流输电系统建模,又要对新能源基地建模,应用场景的复杂性对仿真平台要求更高。 1 技术分析(创新性、先进性、独占性) 1.1 国产化实时仿真技术现状 实时仿真是指仿真模型执行进度与系统时钟完全同步的一类仿真,具备这种特性的仿真装置称为实时仿真器。新型电力系统的认知、试验、生产、培训需求快速增长,形成了实时仿真领域巨大潜在市场。但目前RTDS、RT-LAB等进口设备依旧垄断市场,对于大规模新能源场站、县域规模万节点级电力系统、多端特高压直流输电等应用场景电磁暂态仿真,所需的仿真资源巨大,平台造价极高。且关键核心技术处于卡脖子状态,平台应用的灵活性和开放性受到很大限制。只有开发和推广国产化实时仿真技术才能为顺利推进新型电力系统建设过程中的研究和生产提供自主可控的工具和手段。 1.2 UREP与进口设备的对比试验  为了实现电力实时仿真器的国产化替代,彻底解决电力实时仿真领域的技术“卡脖子”问题,国产实时仿真器UREP需要与国际主流技术进行对比,力求达到甚至超过目前世界最先进的技术。对标对象为行业公认的电力系统实时仿真仪(RTDS)和行业广泛使用的RTLAB,以上两款设备均为加拿大生产。对比试验方案如图1-1所示。制定标准(典型)测试算例,分别在UREP、RTDS和RTLAB环境下搭建测试算例的仿真模型,在完全相同的测试条件和试验内容下得到各种仿真器的仿真结果,比较仿真结果的一致性。同时比对仿真规模、建模效率和编译时间等关键指标。             图1-1  国产UREP与进口设备对标方案 1.2.1电气网络仿真对比    图1-2表示了一个多支路网络,基于图1-1中三种仿真器搭建该模型,通过不断增加支路数扩大网络规模,直到仿真器过载,得到仿真器的算力极限。         图1-2  多支路电气网络 在50us仿真步长下,对于图1-2案例RTLAB最大仿真规模为78个 三相节点,UREP也为78个 三相节点,二者相同。在编译速度方面,RTLAB编译时间为3分52秒,UREP编译时间为1分12秒,UREP是RTLAB的3.22倍。      图1-3  基于RTDS的仿真模型  当基于RTDS建模时,如图2-5,每块PB5最多允许24个节点;当基于NovaCor建模时,在超大步长150us下可以达到100节点,在50us步长下仿真规模未知。 2.2.2 双馈风机仿真对比   双馈风机含有电机、传动链、电力电子变流器和控制系统,是具有代表性的新能源元件。在在50us仿真步长下,对于如图1-4案例,RTLAB最大仿真规模为6台,UREP也为6台,二者相同。在编译速度方面,RTLAB编译时间为7分0秒,UREP编译时间为2分12秒,UREP是RTLAB的3.18倍。                图1-4  双馈风机测试案例 2.2.3 直流输电仿真对比   直流输电是最复杂的电力电子装备,有换流阀、阀控制器、极控制器、站控制器等一次和二次系统,是实时仿真领域的难点,也是检验仿真器能力的试金石。图1-5是双端单极直流输电系统测试用例,每端包含2个六脉波桥,控制保护包括了阀控、极控和主控模型,封装于蓝色模块内。   图1-5 双端单极直流输电系统测试用例 将图1-5所示算例分别在RTLAB和UREP中建模运行,在单核可用资源下,若仿真对象为电气主系统和控制保护组成的整个系统,则RTLAB过载,UREP也过载。若仿真对象仅为电气主系统(即双侧电源、交直流滤波器和4个6脉波桥),则RTLAB和UREP均不过载。在编译速度方面,RTLAB编译时间为3分40秒,UREP编译时间为1分11秒,UREP是RTLAB的3.10倍。 2.2.4 同步发电机组仿真对比    同步发电机目前仍是电力系统主力电源,是电力系统的主要仿真对象。同步发电机组模型包括同步发电机、调速器、励磁调节器及升压变。搭建多台同步电机并列运行算例,如图1-6所示。   图1-6  同步电机并列运行算例 在50us仿真步长下,对于图1-6案例RTLAB最大仿真规模为11台,UREP为13台。在编译速度方面,RTLAB编译时间为3分51秒,UREP编译时间为1分16秒,UREP是RTLAB的3.04倍。 2.2.5 最小步长对比 基于CPU的最小仿真步长能够体现仿真计算时间的抖动问题,抖动越小,允许的仿真步长就越小。因此,通过比较最小仿真步长,也可以反映仿真器的计算性能。仿真对象采用单台双馈风机,模型包括风力机、绕线异步电机、机侧变流器、网侧变流器、主动系统、所接入的配电网等元素,如图1-7所示。             图1-7  测试最小步长算例 经测试,RTLAB最小仿真步长为24us,UREP最小仿真步长为20us。可见,UREP具有更小的仿真抖动。 2.2.6 仿真精度对比 为了验证国产UREP的仿真精度,采取和RTDS交叉对比验证方法说明UREP的仿真精度。电力系统仿真包括电磁暂态和机电暂态,因此,从电磁暂态和机电暂态两个方面进行对比,同时考虑各种应用场景,以覆盖各种情形。电磁暂态检测案例的电网拓扑如图1-8所示。 图1-8 电磁暂态检测使用案例 无穷大电源电压等级为110kV,频率为50Hz,系统内阻抗为;L1、L3线路阻抗为,L2、L4线路阻抗为, T1、T2两变压器的额定容量均为,短路电压,空载损耗,空载电流,短路损耗,变比,高低压绕组均为Y形联结;假设系统A1、B1、A、B处供电负荷为(5+j1)MVA,C1和C处供电负荷为1+j0.1MVA。UREP建模如图1-9所示。   图1-9 电磁暂态检测案例的UREP仿真模型 基于RTDS建立电磁暂态案例的仿真模型如图1-10所示,其电压过零点短路控制如图1-10所示。   图1-10  RTDS仿真模型   图1-11  RTDS电压过零点短路控制结构 对上述模型,分别使用UREP和RTDS进行实时仿真,仿真时间为0.2s,短路故障发生在0.06s-0.16s之间,仿真步长为100微秒,横轴表示在0.2s时间内仿真采样点数,纵轴表示母线电压、电流,单位分别为V、A。在母线A点处发生三相短路,短路前后及短路期间的三相电压波形如图16-7。为了显示细微之处,将图1-12局部放大后,如图1-13。   图1-12  A点发生三相短路时三相电压波形   图1-13  A点处发生三相短路时三相电压波形局部放大 点划线为RTDS仿真结果,虚线为UREP仿真结果。可以看出,两种仿真结果高度重合,表现出电磁暂态仿真结果的高度一致。电磁暂态过程除了表现在电压动态还表现在电流动态,短路前后及短路期间的三相短路电流波形如图1-14。   图1-14 A点处发生三相短路时三相电流波形 图1-15  A点处发生三相短路时三相电流波形局部放大图 1.3  对标结论 (1)在内核资源完全等同条件下,国产UREP和RTLAB的仿真算力基本相同,即内核授权数相同条件下,具有相同的仿真规模。 (2)国产UREP的建模效率和编译速度远远高于RTLAB。小规模场景下,UREP是RTLAB的3倍左右,大规模场景下UREP是RTLAB的45倍左右。 (3)在仿真对象完全相同的条件下,国产UREP和RTDS的电磁暂态仿真结果完全相同,二者交叉对比没有差别。
贵州大学 2022-08-15
面向工业系统智能优化与决策的边缘计算平台
同济大学电子与信息工程学院康琦教授团队面向复杂工业过程智能运维,深度融合物联网、大数据、人工智能等技术,设计开发了高集成度与模块化的边缘计算平台。该技术采用云-边-端一体化的系统架构设计,结合迁移学习、演化计算等智能技术,构建了可持续学习的通用网络进化框架,针对不同应用场景,通过模型与算法的模块化管理与轻量化学习,可实现边缘侧模型定制与部署,全面感知系统动态,自适应环境与工况变化,实现无人值守的工业过程在线学习、智能控制与持续优化,显著降低运行成本,提升企业经济效益。 边缘计算平台架构 目前该技术已经获得相关授权发明专利6项,面向钢铁冶炼、汽车制造、污水处理、轨道交通等领域,在多个省市的节能控制与运营优化相关智能化工程项目中得到了推广应用,平均节能达30%,经济效益明显。基于该平台技术对城市污水处理厂生物曝气过程进行自适应软测量建模与学习优化控制,实现了多目标联合优化的在线智能监控系统,年平均节电超过27%。对大型制造企业的多车间冷源系统实现了全自动在线优化与智能控制,系统能效提升一倍,年平均节电36.9%。
同济大学 2021-04-11
E博士多媒体校园网系统平台
产品详细介绍
烟台正达电子技术有限公司 2021-08-23
开源鸿蒙创新实验平台 型号:LPHM-25
1、产品介绍 国家大力鼓励信创产业发展的背景下,本实验箱基于OpenHarmony操作系统,是一款结合主流人工智能外设模块、物联网通信模块,满足实训需求,助力开发者提升OpenHarmony的应用开发。 OpenHarmony全场景实验箱,为开展鸿蒙系统实践教学的专用平台,通过该实验平台实现鸿蒙系统下的OpenHarmony北向应用开发、OpenHarmony南向设备开发等关键技术,使学生在深入了解鸿蒙系统的基础架构、技术原理、开发流程的同时,掌握基于标准鸿蒙系统和轻量级鸿蒙系统的应用开发的技能,为未来从事鸿蒙应用开发打下坚实的实践基础,打造智慧农业、智能家居、智能医疗、智能安防、智慧交通等现代智慧场景的综合应用的能力。 本实验箱适用于OpenHarmony操作系统在高校的移动互联、物联网、人工智能、创新创业等相关专业中实践教学的应用和推广。主要适用于高校、职业院校、培训机构、企业、开发者和相关师生。具备功能齐全、课程资源丰富、场景灵活组合等优势,实现了产学研创一体化的教育模式。 2、产品展示   图2.8 开源鸿蒙创新实验平台展示 3、产品特点 先进性 l性能卓越:搭载嵌入式边缘计算处理器RK3566/rk3568,配备4GB RAM与16GB存储空间,以及11.6英寸高清电容触摸屏,确保流畅的用户体验。 l支持多操作系统:鸿蒙(OpenHarmony)、Linux; 扩展性 l定制化设计:所有硬件单元均采用模块化设计,支持根据具体需求进行定制化选型和搭配。 l项目套件丰富:提供多种可选的项目套件模块,支持完成多样化的鸿蒙应用场景设计和创新。 实验箱采用磁吸式模块设计,不仅可以轻松地吸附在验箱上,从而简化了安装和拆卸过程,而且用户可以根据实际需求随时添加或更换模块,从而灵活地拓展实验箱的实验内容和应用场景。 配套 课程与实验:支持包括鸿蒙北向应用开发、鸿蒙南向设备开发等在内的丰富课程和实验。 该产品除软硬件双开源,可二次开发和学习使用外,还配备针对设备完整的实训指导书完整丰富的教学实训素材资源。本产品提供免费的安装部署服务和设备实训培训服务。
江苏学蠡信息科技有限公司 2025-07-15
首页 上一页 1 2
  • ...
  • 25 26 27
  • ...
  • 763 764 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1