高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于深度学习的新冠病毒的早期检测筛查模型系统
西安电子科技大学计算机科学与技术学院智能软件与系统新技术研究所副教授张亮团队依托上海瑞金医院、西安交通大学第二附属医院等的新冠肺炎疑似、确诊患者肺部CT影像,通过综合分析新冠肺炎患者的肺部CT影像特点(磨玻璃、体积大小、位置等特征),张亮团队加快技术攻关,设计开发了基于深度学习的新型冠状病毒的早期检测筛查模型系统。
西安电子科技大学 2021-04-10
高效脱漆剂
本高效脱漆剂由北京科技大学腐蚀与防护中心电化学工程与材料研究室研制开发。 有机涂层广泛作为建筑、船舶、桥梁、机器设备等的装饰、防腐防锈涂层。在使用过程中随时间流逝有机涂层会老化失去装饰、防护性能而必须加以更新,此时需将旧的、老化的有机涂层去除而涂刷新的涂层。 喷涂涂层、电泳涂层、静电粉末喷涂涂层等广泛应用于汽车、家用电器、五金建材、钢制家具、造船等行业,这些产品的生产或修理过程中,不可避免的会产生不合格残、次产品及残、次涂层。为了减少浪费、降低生产成本,生产厂家大多选择将残、次的涂层脱除,再喷涂新的涂层。 涂层的脱除主要有使用铁刷等的机械的方法和使用化学脱漆剂的两类方法,机械的方法费时费力、难于达到高脱除质量,而以使用脱漆剂的方法更为有效、简便、脱除质量高。但目前市场上销售的脱漆剂大多存在腐蚀性大、脱漆效果差等缺点。 针对现有产品存在的问题,北京科技大学腐蚀与防护中心电化学工程与材料研究室研制开发了一种高效脱漆剂。本高效脱漆剂生产设备不多,工艺简单、易于操作。高效脱漆剂可在30秒种内迅速脱除静电粉末涂层等有机涂层,且对基体腐蚀小,环保性能好,浸泡、刷涂脱除均可,能满足各种生产过程的要求。 本产品可广泛应用于脱除建筑、船舶、桥梁、机器设备等的装饰、防腐防锈有机涂层,尤其是家用电器、五金建材、钢制家具及其他需脱除静电粉末喷涂层的行业。
北京科技大学 2021-04-11
“卡力素”肠内营养制剂的研发及临床应用
项目现状:我科参与国内多种肠内营养制剂的研究及临床应用效果观察,积累了丰富的经验。现已独立完成“卡力素”肠内营养制剂的基础研发、动物实验并应用于创伤病人进行临床效果观察,实验表明该制剂能有效改善创伤患者蛋白质营养状况和免疫功能。目前,尚有待于将该产品产业化生产,并进行市场推广。 项目创新:将食品工程与临床营养学等学科进行交叉和优势集成实现肠内营养制剂的生产技术和应用方面的创新,生产出更易于被机体吸收利用的肠内营养制剂,并以此作为能量及优质氮源的来源,以改善机体营养状况。另外,目前我国尚无医用食品管理法规,通过本项目的研究,为形成我国医用食品标准提供基础数据,并建立相关的医用食品质量标准。
四川大学 2016-04-15
组合化学修饰的内吗啡肽-1 及其制备方法
本发明涉及内吗啡肽-1(Endomorphin-l,EM-1)的一类新的类似物 [GMLPC]-EM-1 、 [GMLDC]-EM-1 [GMDPC]-EM-1和[GMDDC]-EM-1 及 其制备方法
兰州大学 2021-04-14
基于椭圆柱内反射镜的位移检测装置
本发明公开了一种基于椭圆柱内反射镜的位移检测装置,该装置将凸透镜成像的原理进行巧妙地运用,通过光致发光物质(或漫反射材料)、椭圆柱内反射镜和线阵感光元件将光汇聚点的位置检测转化为线阵感光元件上感光最强点的检测,只需通过计算机便可检测出来。装置包括点光源激光器、凸透镜、椭圆柱内反射镜和线阵感光元件。点光源激光器与椭圆柱内反射镜放置于凸透镜的同一侧;光致发光物质(或漫反射材料)涂在椭圆柱内反射镜的一条焦线上,此焦线与凸透镜的光轴重合;椭圆柱内反射镜的另一焦线放置线阵感光元件,以检测被测表面的位移。该装置
华中科技大学 2021-04-14
基于耳内图像的耳科疾病智能辅助诊断系统
本项目通过收集本院耳鼻喉科6066张正常人、分泌性中耳炎、急性化脓性中耳炎活动期及化脓性中耳炎静止期耳内镜图像。 一、项目进展 创意计划阶段 二、负责人及成员 姓名 学院/所学专业 入学/毕业时间 徐倩慧 中山大学医学院 2017.09~2022.06 童钊鹏 中山大学孙逸仙纪念医院 2021.09~ 三、指导教师 姓名 学院/所学专业 职务/职称 研究方向 蔡跃新 中山大学孙逸仙纪念医院 副主任医师 耳鼻喉头颈外科 四、项目简介 本项目通过收集本院耳鼻喉科6066张正常人、分泌性中耳炎、急性化脓性中耳炎活动期及化脓性中耳炎静止期耳内镜图像。通过模仿医生诊断的注意力机制,将获取局部关键特征的局部分类器与获取全局特征的主分类器有机结合,构成深度学习的主框架。通过计算AUC等统计学指标来评估模型的性能,并与两位副主任医师、两位主治医师进行人机对比来进一步评估模型的性能,同时通过热图显示深度学习模型在耳内镜图像不同区域的权重,以判断深度学习关注的区域是否与临床医师一致。该深度学习模型可获得整体93.4%的准确率,区分正常人与分泌性中耳炎的AUC为0.99,而区分化脓性中耳炎活动期与静止期的AUC为0.94.模型的准确率要高于两位主治医师,达到副主任医师的水平,同时热图显示深度学习模型定义的关键区域恰好是临床医生做诊断的区域,如化脓性中耳炎鼓膜穿孔区域,分泌性中耳炎的光锥区域。同时,同时,本项目还将深度学习模型的技术落地,自主研发出研发便携式可拍摄与自动诊断的耳镜设备。
中山大学 2022-08-10
一种铁氧体软磁材料的注射成型方法
本发明公开了一种软磁铁氧体材料的注射成型方法。包括如下步骤:1)粉料制备:将铁氧体粉料进行一次混磨,干燥后,将粉料进行预烧,将预烧后的粉料破碎后,再进行二次混磨,并进行干燥处理;2)混炼造粒:将步骤1)得到的粉料与粘结剂均匀混合后,混炼,得到混料,将混料粉碎;3)注射成型:将粉碎后的混料加热,在压力条件下,注入到模腔中,打开模具冷却后即得到成型坯体;4)脱脂:将成型坯体置入三氯乙烯中脱脂,干燥,再进行热脱脂;5)烧结:将脱脂后的成型坯体烧结,得到铁氧体软磁材料。本发明适合制备中小型形状复杂、高精度的铁氧体磁芯器件,所制备的铁氧体软磁材料具有密度大而均一、内部组织均匀、机械强度高和铁损相对较低的特点。
浙江大学 2021-04-11
一种铁氧体软磁材料的注射成型方法
本发明公开了一种软磁铁氧体材料的注射成型方法。包括如下步骤:1)粉料制备:将铁氧体粉料进行一次混磨,干燥后,将粉料进行预烧,将预烧后的粉料破碎后,再进行二次混磨,并进行干燥处理;2)混炼造粒:将步骤1)得到的粉料与粘结剂均匀混合后,混炼,得到混料,将混料粉碎;3)注射成型:将粉碎后的混料加热,在压力条件下,注入到模腔中,打开模具冷却后即得到成型坯体;4)脱脂:将成型坯体置入三氯乙烯中脱脂,干燥,再进行热脱脂;5)烧结:将脱脂后的成型坯体烧结,得到铁氧体软磁材料。本发明适合制备中小型形状复杂、高精度的铁氧体磁芯器件,所制备的铁氧体软磁材料具有密度大而均一、内部组织均匀、机械强度高和铁损相对较低的特点。
浙江大学 2021-04-11
可显著提高对恶行肿瘤的治疗效果的纳米药物
近日,西南交通大学材料科学与工程学院周绍兵教授团队在肿瘤靶向治疗方面取得重大进展,成果发表在《Advanced Materials》,该期刊是工程与计算大学科、材料与化学大领域的顶级期刊,在国际材料领域享誉盛名!该期刊接收与材料领域相关的顶尖科研成果,其接收率只有10%-15%,影响因子达到25.809。 周绍兵教授团队制备了一种粒径可变的、胶原酶改性的聚合物胶束,可以同时提高其向肿瘤内部的渗透和在肿瘤部位的滞留时间,从而提高治疗效果(图1)。他们首先通过两种嵌段共聚物:端基为MAL的聚乙二醇-b-聚β氨基脂(MAL-PEG-PBAE)和与琥珀酸酐修饰的顺铂复合的聚己内酯-b-聚环氧乙烷-三苯基膦(CDDP-PCLPEO-TPP)的共组装得到胶束,通过点击化学将胶原酶(可消化纤维蛋白)修饰在胶束表面,最后通过静电相互作用将硫酸软骨素修饰在胶束外层,屏蔽胶束正电荷的同时防止胶原酶在血液循环过程中被降解。在正常生理环境中,胶束粒径为100 nm左右,可实现体内长效循环而不被肾清除。当循环至肿瘤部位后,弱酸环境使得叔胺质子化,PBAE嵌段由疏水变为亲水,造成部分胶原酶改性的MAL-PEG-PBAE从胶束中解离,促进了对ECM中胶原纤维的降解,提高胶束向瘤内的渗透。同时,由于亲水性增加,胶束粒径也增大至250 nm,被“困”在肿瘤组织,难以回到血液循环中,增加了胶束在肿瘤的滞留时间。动物实验结果证实该纳米药物可显著提高对恶行肿瘤的治疗效果。 以上相关成果发表于Advanced Materials (2020, 1906745)上。论文的第一作者为西南交通大学材料学院博士研究生徐傅能,通讯作者为周绍兵教授和生命学院王毅博士。 近年来,周绍兵教授团队一直致力于高分子纳米药物载体材料的研究,取得了多项突破性成果,开发出新型靶向纳米载体和环境响应纳米载体,有效提高了恶性肿瘤的治疗效果。该团队已在Advanced Materials, Nano Letters, Advanced Functional Materials, Biomaterials, Small等高影响期刊发表了多篇论文,研究的高分子材料正与多家企业合作,期望能将相关成果尽快进行临床转化。 论文链接:https://doi.org/10.1002/adma.201906745
西南交通大学 2021-04-10
可外包重构的电子医疗记录的秘密共享云存储方法
本发明提供了一种秘密共享云存储方法,其包括:预处理阶段、分发阶段、重构阶段、恢复与验证阶段。预处理阶段由HC‑A对电子医疗记录进行预处理,预处理的结果将被直接用于分发阶段;在分发阶段,HC‑A生成n个份额,分别分发给CP1,K,CPn;在重构阶段,CPre从CP1,K,CPn处得到不少于t个份额,恢复出电子医疗记录预处理之后的结果,并发送给HC‑B;恢复与验证阶段HC‑B恢复出电子医疗记录并验证其正确性。该方法在确保减小用户计算耗费的同时,也能确保存储电子医疗记录的云服务提供商和恢复电子医疗记录的云服务提供商均不能获得该记录。可应用于电子信息等领域,可产生客观的效益。
青岛大学 2021-04-13
首页 上一页 1 2
  • ...
  • 52 53 54
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1