高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
神经元突触及神经纤维结构模型XM-650
XM-650神经元突触及神经纤维结构模型   XM-650神经元突触及神经纤维结构模型由4部件组成,放大12000倍,展示神经元突触小泡、突触裂隙、突触前膜、突触后膜及线粒体等结构,并示有髓及无髓神经纤维的超微结构以及髓鞘板层的形成过程。 尺寸:31×16×28cm 材质:玻璃钢材料
上海欣曼科教设备有限公司 2021-08-23
XM-650神经元突触及神经纤维结构模型
XM-650神经元突触及神经纤维结构模型   XM-650神经元突触及神经纤维结构模型由4部件组成,放大12000倍,展示神经元突触小泡、突触裂隙、突触前膜、突触后膜及线粒体等结构,并示有髓及无髓神经纤维的超微结构以及髓鞘板层的形成过程。 尺寸:31×16×28cm 材质:玻璃钢材料
上海欣曼科教设备有限公司 2021-08-23
一种基于调控微管聚集的靶向性多肽-葫芦脲超分子组装体及其制备方法及应用
一种基于调控微管聚集的靶向性多肽‑葫芦脲超分子组装体及其制备方法及应用。其特征在于:苄基咪唑通过化学修饰到多肽的骨架上,不仅保留了多肽靶向微管蛋白的能力,还为苄基咪唑与CB[8]的非共价包结提供了锚点。形态学研究表明,微管的自组装形貌通过的交联可以戏剧性地从纤维状的纳米聚集体转变为颗粒状的纳米聚集体。此外,细胞和活体实验证明,广泛的超分子交联可以诱导细胞凋亡,最终抑制肿瘤的增殖。本发明的优点是:证明了微管之间的聚集可以通过多肽‑微管蛋白之间的相互作用和多肽‑葫芦脲之间的超分子作用进行有效地调控,这可能被发展成为治疗癌症等许多退行性疾病的有前途的疗法。
南开大学 2021-04-10
一种用于海洋超软土原位测试的十字形全流触探探头
本发明公开了一种用于海洋超软土原位测试的十字形全流触探探头,包括测试系统和探端,所述探端呈十字形状,所述探端垂直固定于测试系统下方,所述测试系统上部与探杆相连,所述测试系统包括传感器、信号传输线和套设在探杆上的套筒,所述套筒包括摩擦套筒和端阻套筒,所述摩擦套筒设置于端阻套筒上方,所述传感器包括设置在摩擦套筒上摩阻压力传感器以及设置在端阻套筒上的端阻压力传感器和孔隙水压力传感器,所述摩阻压力传感器用于感应侧摩阻力,所述端阻套筒靠近探端一侧设置有孔压过滤环。本发明能够针对海底/水下超软土层开展全流触探,准确的测定超软土层的相关物理力学性质参数,为海洋工程勘察和基础施工提供可靠参考依据。
东南大学 2021-04-11
新型微波超材料对空间波和表面等离激元波的自由调控或实时调控
成果介绍超材料(Metamaterial),或其二维形式—超表面(Metasurface)由具有亚波长尺寸的人工原子周期或者非周期地排列而成,其描述方式可分为等效媒质和空间编码两种形式。由等效媒质描述的超材料(或超表面)我们称之为新型人工电磁媒质,由空间编码描述的超材料(超表面)我们称之为编码超材料(超表面)和数字超材料(超表面)。对于新型人工电磁媒质,人们通过自由设计单元结构、单元排列方式、以及单元各向异性,可以根据意愿控制等效媒质的媒质参数,实现自然界中不存在或者很难实现的介电常数和/或磁导率,进而控制电磁波。本成果对于新型人工电磁媒质对电磁波的调控作用,例如隐身衣、电磁黑洞、雷达幻觉器件、远场超分辨率成像透镜、新型透镜天线、隐身表面、极化转换器、人工表面等离激元器件及混合集成电路等。技术创新点及参数对于编码和数字超材料(超表面),我们提出基于空间编码调控电磁波的新思路。其中,一比特编码超材料选用相位差接近180度的两种基本单元(记为0单元和1单元),按照一定规律排列0和1单元构成超材料,以实现所需的设计功能。当电磁编码采用FPGA控制时,可实现现场可编程超材料,即单一的超材料在FPGA的实时控制下可实现多种功能(例如单波束、多波束、波束扫描、隐身功能等)。市场前景本成果获得国家自然科学二等奖。该项目突破传统模拟超材料的等效媒质表征方法,创造性地提出用 0 和 1 表征的数字超材料,建了数字编码和现场可编程超材料新体系;在国际上率先从微波传输线的角度研究人工 SPP 超材料,提出一种性能优越的超薄、可共形 SPP 传输线,开辟了基于 SPP 模式的微波领域新分支,实现了超材料研究从跟跑、并跑变成走在世界前列的跨越。
东南大学 2021-04-11
在耗散弗洛凯系统的超冷原子中观察到宇称-时间对称性破缺
利用周期性共振光脉冲序列导致的自旋依赖布居数耗散、射频场耦合下的自旋拉比振荡、以及Feshbach共振调制下的相互作用控制,在一个量子系统中同时实现了精密调控耗散、相干和相互作用三大要素,为实现宇称-时间对称的非厄米哈密顿量的量子模拟奠定了技术基础。       实验结果不仅精确地复现了在经典系统中已经观测到的静态哈密顿量的宇称-时间对称性破缺,还利用周期性耗散机制发现了在任意小耗散下的宇称-时间对称性破缺,观察到系统的能量可以在极其微小的耗散下发生不可逆的发散。不同于以往静态哈密顿量的单参数相变,周期性耗散驱动的宇称-时间对称性的相图在频率的参数空间实现延拓,在特定的频率区间,宇称-时间对称性对于耗散有极其敏感的响应。这个现象之前只有理论预言,而罗乐教授小组首次在绝对零度之上500纳开尔文的超冷费米气体中首次观测到。同时这项工作还发现了对称性破缺点附近的慢衰变模式、类比于多光子跃迁的高阶PT对称性破缺等新颖有趣的物理现象。       目前,罗乐教授研究团队正基于非厄米量子体系研究宇称-时间对称哈密顿量的拓扑量子态转换、耗散下的量子相干态保持、以及高阶奇异点附件的超灵敏能谱响应。这些研究将为基于开放量子系统的量子计算和量子精密测量开拓新的前沿。
中山大学 2021-04-13
中国科学技术大学揭示核量子效应在界面超快电荷转移中的重要作用
近日,来自中国科学技术大学物理学院、合肥微尺度物质科学国家研究中心,国际功能材料量子设计中心(ICQD),合肥国家实验室的赵瑾教授研究团队与王兵、谭世倞教授、以及北京大学李新征教授合作,发现固体-分子界面的超快电荷转移与质子的量子动力学有很强的耦合,揭示了电荷转移过程中核量子效应的重要作用。
中国科学技术大学 2022-07-11
小型化的方向图可重构天线、结构紧凑的超宽带MIMO天线
方向图可重构天线可以根据环境的变化,调整天线的辐射波束,实现最佳的辐射效率,从而使一副天线用作多付,降低制造成本。大多数的方向图可重构天线是单极化天线,我们除了研究单极化天线之外,还研究设计了性能优良的双极化方向图可重构天线以及极化可变的方向图可重构天线。这些天线可以应用于基站和移动端。 将方向图可重构天线组成阵列,可以提高增益,就能够应用于无线通信的基站或者雷达领域,实现动态的大范围波束扫描。 若将天线阵列应用于基站,可提高基站天线的性能,且实现基站波束的实时动态扫描,可以实现动态波束赋形,从而能根据环境变化,增强所需方向的信号强度,降低干扰方向的信号强度。降低环境中的电磁干扰,提高信号的有效性,有利于提高通信质量,还能够节省能源。 目前我们已经与某公司进行合作开发,研制了高性能的方向图可重构天线,能够满足应用需要。因此,部分研究成果已交付给用户。此外,部分研究成果已申请专利,还有部分成果已经获得专利授权。 超宽带MIMO天线,主要是应用于无线通信,用于提高信道容量。移动端的空间有限,安装多个天线时,天线之间有较强的互耦,这会大大降低天线的性能。采用具有较高隔离度的超宽带MIMO天线,可以实现不同天线之间的低相关性,从而提高通信容量。目前我们已经设计了多种具有较好隔离特性,且频带很宽的超宽带MIMO天线。部分结构已申请专利。
电子科技大学 2021-04-10
用于限制性航道的箱体与插板组合结构的生态护岸方案
成果介绍通过预制透水钢筋混凝土箱体与插板的组合型结构,相邻箱体插板连接、插板固定与箱体两侧外壁中部卡槽,有效消减船行波,节约施工材料,降低工程造价,实现生态和经济效益。技术创新点及参数1、内核限制性航道中,优化硬质结构竖向尺度及纵向布置,增强消浪性能和临近岸坡水体的水流多样性。2、在迎水立面形成格栅型消浪结构,降低航道内船行波的反射,提高船舶航行安全与效率,尤其是在低水位期。3、上部形成透空板式防浪结构,在高水位时消减入射的船行波。减小在护岸平台和二级柔性护坡上荷载,提高植被和生态保护,凹凸错落形态提高水流多样性,利于水生动植物栖息。4、预制结构,实现工厂制作和机械化施工,提高施工效率,降低造价。插板结构,降低钢筋混凝土用量,工程造价节约15%~20%。市场前景与河道改造企业合作或承接政府的内河航道改造的设计与技术优化。短期成熟技术投入重点应用场景,可以1年回收投入成本。
东南大学 2021-04-11
一类蛋白质二级结构智能预测模型构造方法
本发明公开了一类蛋白质二级结构智能预测模型构造方法,利用多层递阶、逐步求精的结构模型集成。此模型CPM融合了原创型KAAPRO方法、新型同源性分析方法、改进型SVM方法等;CPM打破了传统的单一物化属性分析或单一结构序列分析的技术线路,而是采取了结构序列分析与物化属性分析相结合的优选线路,确保了模型整体的优化与预测精度的同时具有更好的普适性; CPM 采用高起点的alpha/beta库挖掘;并以领域知识与背景知识贯穿;CPM能够很好地对偏alpha/beta型蛋白质的二级结构进行预测,取得86%的最高精度(同类最高达81%)。
北京科技大学 2021-04-11
首页 上一页 1 2
  • ...
  • 104 105 106
  • ...
  • 130 131 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1