高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
固废处理与工程应用
干燥机采用气流式干燥的原理,节能效果突出,由于干燥介质与湿污泥直接接触,传热传质系数大,因而其干燥强度大,设备布置紧凑,占用空间较小;可以灵活选用热源,优先推荐使用各种燃烧系统的排烟,对湿污泥的适应性好,可用于膏糊状、滤饼状等湿污泥的直接快速干燥。全自动,无人值守。
东南大学 2021-04-11
蚯蚓生物工程床资源化处理农业有机固废技术
该成果核心技术主要包括蚯蚓生物工程床的缓冲层、工作层和交互层等构建技术,工作蚓的选育、驯化、接种技术,养殖废弃物的布料、高效处理、预防失水干化技术、蚯蚓同龄饲养技术、高效采收分离等系列技术等。该成果节能减排,处理彻底,无二次污染和潜在环境威胁;工艺简单、规模灵活;投资少、效益高;保护耕地,提高地力。
扬州大学 2021-04-14
固废安全处理处置与资源化
市场背景:我国具有世界上最大的有机质废弃物产生量:城镇污泥年产量已经超过4000万吨(以含水率80%脱水污泥计,以下同),以有机垃圾、餐厨废弃物为代表的城市有机质废弃物产量超过1亿吨/年。但我国对有机质废弃物的稳定化处理与资源化处置显著落后于发达国家,目前我国主要处理处置措施仍为填埋和焚烧,对城市环境造成严重的二次污染威胁。随着欧洲等发达国家可再生能源战略的实施、国际能源危机的进一步加深、我国对大气环境及水环境质量要求的进一步提高,城镇有机废弃物的高效生物燃气化技术,尤其可以满足大型城市集中式处理处置与能源资源综合利用需要的有机废弃物干法厌氧生物制气技术,可以把有机质废弃物高效转化为生物燃气,生产清洁能源,实现废弃物的减量化和高值循环利用,已经成为目前国际上有机垃圾、城市污泥等富含有机质废弃物处理和资源化利用的重点发展方向,各国纷纷在该领域投入大量研究,抢占城市有机质废弃物资源化与能源化产业化技术的制高点。由于我国污泥泥质的特殊性,其有机质含量远低于国外、含砂量高、生物反应池负荷低等,国外传统成熟的污泥厌氧消化处理技术在我国无法得到稳定应用,造成国内大量污泥处理处置设施的故障闲置,城市污泥及有机质处理处置技术存在着重大的瓶颈性问题。 国内外现状:国内外有微波强化预处理促进低有机质污泥厌氧资源化、城市低有机质污泥的好氧堆肥研究、温和热处理对低有机质污泥厌氧消化性能的影响等相关城市污泥厌氧化资源化技术,但针对我国污泥有机质低、含砂量高、区域差异大的特点的合适的污泥资源化处理处置技术却鲜少,本技术方案突破了传统厌氧消化要求进料含固率为5%的技术要求,实现了将进料含固率提升至10%~20%实现连续稳定厌氧消化的可行性与调控措施,并在国际上较早报道了脱水污泥直接实现厌氧消化的连续流试验结果,并提出了高含固体系下污泥与餐厨等城市有机质废弃物的协同厌氧消化调控技术,创造性的提出了适用于我国典型低有机质污泥高含固厌氧消化的技术路线。 目前本项目组针对我国污泥低热值的泥质特点,开发了适用于生污泥与消化污泥的热解/焚烧耦合技术,并形成核心装备,解决了污泥及工业固废高效热化学处理的技术难道与成套装备。
同济大学 2021-02-01
固废安全处理处置与资源化
项目成果/简介:市场背景:我国具有世界上最大的有机质废弃物产生量:城镇污泥年产量已经超过4000万吨(以含水率80%脱水污泥计,以下同),以有机垃圾、餐厨废弃物为代表的城市有机质废弃物产量超过1亿吨/年。但我国对有机质废弃物的稳定化处理与资源化处置显著落后于发达国家,目前我国主要处理处置措施仍为填埋和焚烧,对城市环境造成严重的二次污染威胁。随着欧洲等发达国家可再生能源战略的实施、国际能源危机的进一步加深、我国对大气环境及水环境质量要求的进一步提高,城镇有机废弃物的高效生物燃气化技术,尤其可以满足大型城市集中式处理处置与能源资源综合利用需要的有机废弃物干法厌氧生物制气技术,可以把有机质废弃物高效转化为生物燃气,生产清洁能源,实现废弃物的减量化和高值循环利用,已经成为目前国际上有机垃圾、城市污泥等富含有机质废弃物处理和资源化利用的重点发展方向,各国纷纷在该领域投入大量研究,抢占城市有机质废弃物资源化与能源化产业化技术的制高点。由于我国污泥泥质的特殊性,其有机质含量远低于国外、含砂量高、生物反应池负荷低等,国外传统成熟的污泥厌氧消化处理技术在我国无法得到稳定应用,造成国内大量污泥处理处置设施的故障闲置,城市污泥及有机质处理处置技术存在着重大的瓶颈性问题。 国内外现状:国内外有微波强化预处理促进低有机质污泥厌氧资源化、城市低有机质污泥的好氧堆肥研究、温和热处理对低有机质污泥厌氧消化性能的影响等相关城市污泥厌氧化资源化技术,但针对我国污泥有机质低、含砂量高、区域差异大的特点的合适的污泥资源化处理处置技术却鲜少,本技术方案突破了传统厌氧消化要求进料含固率为5%的技术要求,实现了将进料含固率提升至10%~20%实现连续稳定厌氧消化的可行性与调控措施,并在国际上较早报道了脱水污泥直接实现厌氧消化的连续流试验结果,并提出了高含固体系下污泥与餐厨等城市有机质废弃物的协同厌氧消化调控技术,创造性的提出了适用于我国典型低有机质污泥高含固厌氧消化的技术路线。 目前本项目组针对我国污泥低热值的泥质特点,开发了适用于生污泥与消化污泥的热解/焚烧耦合技术,并形成核心装备,解决了污泥及工业固废高效热化学处理的技术难道与成套装备。应用范围:项目已经进入示范运行阶段,在长沙(基于热水解预处理的高含固污泥厌氧消化工程,500吨/天)、镇江(污泥热水解+污泥/餐厨高含固协同厌氧消化工程,260吨/天)、丽水(市政与工业污泥热解/焚烧耦合无害化处理,100吨/天)等地建立了示范工程,取得了良好的运行效果。 通过本技术的应用实行,市政污泥及城市有机质高级协同厌氧消化制气技术的研发及产业化有助于解决我国有机质废弃物处理设施普遍存在的厌氧消化产气率低、降解率低的问题,在原有工艺基础上提供更高的生物质能源利用率。既可以解决城镇污泥及其他城市有机质的处理处置问题,又实现资源的充分利用和能量流的最大化循环,突破了我国在生物质能这一重大国际热点新能源领域的技术与产业竞争力,具有重要的社会和创新效益。项目阶段:其他(进入示范运行阶段)效益分析:技术亮点:该项研究工作突破了传统厌氧消化要求进料含固率为5%的技术要求,实现了将进料含固率提升至10%~20%实现连续稳定厌氧消化的可行性与调控措施,提出了适用于我国典型低有机质污泥高含固厌氧消化的技术路线,解决了我国城市不同废弃物在高含固的条件下实现协同厌氧消化问题,增加消化设施的工程效益,提高反应效率的问题,为我国城市有机质的协同消化提供了机理与技术研究的支撑,突破了国外技术垄断。在此基础上,进一步针对我国污泥低热值的泥质特点,开发了适用于生污泥与消化污泥的热解/焚烧耦合技术,并形成核心装备,解决了污泥及工业固废高效热化学处理的技术难道与成套装备。 技术优势:相较于传统消化技术,解决了我国有机质废弃物处理设施普遍存在的厌氧消化产气率低、降解率低的问题,实现了高进料含固率下的持续稳定运行,提高了单位体积产气率,从而提高了单位体积产能,在原有工艺基础上提供了更高的生物质能源利用率,从而实现市政污泥、餐厨、禽畜粪便、有机垃圾等废弃物中营养物质与能源的协调调配与高值利用。
同济大学 2021-04-10
高含水有机固废直接阴燃处理技术
本技术针对高含水有机固废提出无需干化、直接阴燃的技术路线,从原理上克服了低热值固废焚烧处置的技术劣势。 一、项目分类 关键核心技术突破 二、成果简介 我国城镇有机固废具有高含水率、低热值的特点,传统的焚烧处置技术往往能耗高、投资大,难以推广应用。本技术针对高含水有机固废提出无需干化、直接阴燃的技术路线,从原理上克服了低热值固废焚烧处置的技术劣势。
华中科技大学 2022-07-26
固废资源的深加工与道路工程应用
上海交通大学 2021-04-13
固废热解气化
高校科技成果尽在科转云
西安交通大学 2021-04-10
有机固废解聚再生技术
项目团队针对各种有机固废的处理与循环利用,原创性成功开发了气体热载体有机固废解聚再生技术。该技术以有机物自产气为热载体提供热源,实现了全密闭循环工艺,能够绿色高效地解聚工业有机废弃物(废旧轮胎、废塑料、废旧皮革、油泥等)、农业有机废弃物(农业秸秆、稻壳、薪柴等)和生活有机垃圾等,使其解聚为木醋液、粗油、炭制品和土壤调理剂、清洁燃气等产品。该技术有如下优势:⑴ 全资源化。有机废弃物全部转化,资源化利用;⑵ 密闭循环。全系统采用全密闭循环工艺,安全环保;⑶ 清洁环保。高温绝氧热解处理有机物,无二噁英、重金属粉尘;⑷ 热效率高。气体热载体直接接触加热,热解聚速度快、效率高、能耗低;⑸ 自热循环。有机物自产的清洁燃气可作为系统热源,自热循环,运行成本低。
北京科技大学 2021-04-13
全固废新型建筑材料
工业固体废渣的有效处置、生态环境污染的源头治理、新老建筑物的节能降耗、海绵城市建设中的排水蓄水、美好城市建设中的路面装饰及传统建材生产对土地资源的消耗等,是国民经济和社会持续发展迫切需要解决的重大问题。本成果以尾矿(黑色金属尾矿、有色金属尾矿、稀贵金属尾矿和非金属尾矿)、燃料废渣(粉煤灰、煤矸石、石油焦等)、冶炼废渣(钢铁冶金渣和有色金属冶金渣)、建筑垃圾、水处理污泥及工业粉尘等工业固体废渣为主要原料,制备建筑物隔热保温隔声用泡沫陶瓷、海绵城市建设用透水陶瓷、裸露路面及建筑物装饰用陶瓷板等新型建筑材料制品,提供全固废或以工业废渣为主要组成的新型建筑材料的产业化技术与方案。 根据不同尾矿、燃料废渣、冶炼废渣、建筑垃圾、水处理污泥等工业固废的化学组成与物相特点,利用各废渣化学组成间的协同-互补-相克原理,通过组成的科学设计和工艺控制,实现工业废渣的最佳组合、最大化利用和高附加值利用;通过化学键合和物理包埋技术,实现对废渣中可能存在的重金属离子的固溶与固封,使制品不产生二次污染。其中,泡沫陶瓷的固废含量为100wt%,体积密度0.37-0.61g/cm3,气孔率78.3-88.5%,抗压强度2.9-8.1MPa,抗弯强度1.4-4.3MPa;透水陶瓷的固废含量为100wt%,透水系数4.68×10-2cm/s,抗压强度72.3MPa,抗弯强度13.3MPa;陶瓷板的固废含量为100wt%,体积密度1.96~2.01g/cm3,最高抗压强度346.5MPa。 优势:(1)原材料优势:以工业废渣为原料,无需消耗化工原料及矿产与土地资源;(2)技术优势:利用各废渣化学组成间的协同-互补-相克效应及固溶-固封技术,既可实现废渣的最佳组合、最大化利用,又可赋予制品优良的综合性能,还可降低烧结温度与时间,从而减少制备过程的能源消耗与排放。(3)其它优势:与有机泡沫材料相比,无机泡沫材料耐高温,无安全隐患;与免烧结泡沫水泥相比,烧结泡沫陶瓷的强度高,使用可靠性强。
中南大学 2022-12-15
煤系固废铝资源利用成套技术
我国是世界最大的铝生产国和消费国,铝产量占世界总产量的30%多,而且仍处于高速增长中。但我国铝土矿储量仅占世界3%,按现有铝工业发展速度静态计算,我国铝土矿资源将只能用10年。煤炭是我国最主要的能源资源,不仅是重要的燃料,还是重要的化工原料。煤炭开采的副产物煤矸石约占其排放量占煤炭开采量的10%~25%,目前我国煤矸石堆积量约30亿吨;煤燃烧利用的必然产物粉煤灰,占原煤质量的15%~40%。目前我国粉煤灰堆贮量已超过29亿吨,而且每年以超过3亿吨的量继续产生。煤气化、液化等产生的煤化工灰渣在我国年排放约4000万吨,未来40年我国将产生煤化工灰渣100~250亿吨。由于地质构造原因,我国的煤系固废中氧化铝含量较高,具有回收利用铝资源的巨大潜力。本项目采用界面活化方法诱导产生铝硅酸盐结构缺陷,在少量助剂协同作用下激发配位体大量重组而最终提高煤化工灰渣反应活性,并以工业大量副产稀盐酸或硫酸为浸取剂,获取多种高附加值化工产品。伴随我国劳动力成本持续上升与环境保护日趋严峻,加大环境保护力度、缓解资源供给瓶颈、推动循环经济形成较大规模、促进资源循环利用产业转型升级是废物资源化科技创新的准则。本项目的开发成功可有效地解决煤化工灰渣的规模化处置和资源化难题,提供新型铝资源,并将形成能源、资源、化工、冶金、环保新型循环产业链,带动我国新型煤化工技术进步和相关产业升级。
华东理工大学 2021-04-11
1 2 3 4 5 6
  • ...
  • 172 173 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1