高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高品质钢中非金属夹杂物控制成套关键技术
钢中夹杂物的成分、形态、尺寸、以及分布的直接影响着钢材的工艺性能夹杂物的控制是生产高品质钢的重中之重。通常,我们会尽可能的将钢中的夹杂物去除,以提高钢材的洁净度;然而,钢中的夹杂物不可能被完全去除,存留的引起缺陷使钢材失效,同时可能会引起水口堵塞,因此,我们通常采用改性处理的方法将钢中的夹杂物改性为低熔点的液态夹杂物,以减小其对钢材质量的危害,也可避免水口堵塞现象,保证钢铁生产的顺行。近年来,我们利用 MnS 夹杂物的易变形性能来提升钢材的易切削性能,还可以利用纳米级的夹杂物来钉扎奥氏体晶界或微米级的夹杂物诱导晶内铁素体的形成,以达到细化晶粒、提升钢材韧性的目的,称此为“第二相粒子冶金”。 (1)高品质钢中非金属夹杂物成分设计。根据不同高品质钢的使用性能要求不同,通过熔点、硬度和变形能力等因素对钢中夹杂物进行成分设计,确定钢中非金属夹杂物的成分目标。 (2)钢中非金属夹杂物多维无损表征技术。利用夹杂物自动分析仪、酸浸蚀、小样电解和大样电解、高分辨同步辐射等多种方法定量三维表征揭示了不锈钢表层夹杂物分布规律,实现钢中(尤其是表层)非金属夹杂物的有效控制。 (3)钢液脱氧过程中非金属夹杂物成分热力学研究。通自主编写的计算程序和热力学算进计算,实际钢液多元复合脱氧条件下钢中各类非金属夹杂物的生成条件。 (4)高品质钢精炼渣成分设计研究。通过模型对大量不同精炼渣系进行优化,对渣-钢-夹杂物多元热力学反应进行预测,根据钢中非金属夹杂物的成分需求,对夹杂物进行精准控制。 (5)高品质钢脱氧剂和辅料设计研究。通过控制高洁净钢的合金和辅料的成分,实现高品质钢中非金属夹杂物的有效控制,从而提升高品质钢产品的洁净度。 (6)耐火材料影响机理研究。通过研究渣-钢-耐火材料的浸蚀机理、界面反应和润湿行为,研究其对高品质钢洁净度和夹杂物成分、数量等的影响,确定最优的耐火材料。 (7)钢中非金属夹杂物去除行为研究。通过实验、物理水模拟和数学模拟相结合的方法,研究冶金反应过程不同时刻和不同工况下非金属夹杂物的数量、尺寸和分布,确定最优的操作工艺,实现钢中非金属夹杂物的有效去除。 (8)钢液二次氧化过程非金属夹杂物行为研究。通过研究空气、渣和耐火材料等对高品质钢中非金属夹杂物的影响,确定不同二次氧化条件下,钢中非金属夹杂物的行为,通过多种手段减少钢液二次氧化。 (9)钢液凝固、冷区和热处理过程非金属夹杂物的变化行为。通过研究凝固和冷却过程中非金属夹杂物的成分、数量、尺寸和分布行为的变化,实现对最终钢产品中非金属夹杂物行为的变化。
北京科技大学 2021-04-13
复杂工程场地强地震动传播模拟及应用关键技术
本项目以复杂工程场地土体动力特性及其对强地震动传播影响的基础理论和应用方法为研究对象,揭示了场地地形地貌、局部岩土体条件与非线性特征及其不确定性等对地震动传播特性的影响规律。
南京工业大学 2021-01-12
L-鸟氨酸和L-瓜氨酸生物制造关键技术
L-鸟氨酸在食品、医药和精细化工领域具有广泛的应用,L-瓜氨酸在抗氧化、医用检测、保健食品、化妆品和食品添加剂等方面具有广泛的应用前景,国内外需求巨大。 L-鸟氨酸和L-瓜氨酸的生产有天然提取法、化学合成法、生物转化法等。天然提取法由于成本高,无法工业化生产;化学合成工艺难于控制,投资大、设备利用率低;生物转化法条件温和,但还是受原料精氨酸生产、已有知识产权专利保护及环保因素等多条件制约。 本成果利用先进代谢工程技术,通过从头理性设计和系统优化谷氨酸棒杆菌,构建了具有自主知识产权的生产L-鸟氨酸和L-瓜氨酸谷氨酸棒杆菌工程菌。生产L-鸟氨酸和L-瓜氨酸的谷氨酸棒杆菌工程菌不含任何质粒,遗传稳定。以葡萄糖无机盐培养基生产L-鸟氨酸,目前在7L发酵罐水平,通过分批补料的方式,通过约72小时左右发酵,L-鸟氨酸产量可达到50g/L左右。
南京工业大学 2021-01-12
生物可降解聚酯工业化生产及改性关键技术
江南大学化学与材料工程学院在生物可降解聚酯方面获得如下技术:聚对苯二甲酸-己二酸-丁二醇共聚酯(PBAT)、聚对苯二甲酸-丁二酸-丁二醇共聚酯(PBST)连续化工业生产技术;聚丁二酸丁二醇酯(PBS)、聚丁二酸-己二酸-丁二醇共聚酯(PBSA)中式间歇生产技术。同时针对以上聚酯开发出一系列商业化改性制品:PBAT(PBST)与淀粉改性膜制品(可堆肥降解垃圾袋、包装袋、泡沫塑料)、PBAT(PBST)与 PLA 改性膜制品(可降解地膜、保鲜膜、包装膜)、PBST(PBSA)改性纺丝制品(无纺布、编织袋)、PBS 改性制品(一次性注塑制品)。
江南大学 2021-04-13
高浓度工业废水处理关键技术研发与应用
项目针对工业废水浓度高、难降解的特点,从高级氧化前处理、厌氧处理及资源化方面集成研发废水处理技术,建立高浓度、难降解废水处理的技术体系,形成如下主要成果: (1)开发了高浓度工业废水的前处理技术,采用非均相催化臭氧氧化,光电协同催化氧化等高级氧化术,降解高分子、难生物降解的污染物,提高废水的可生化性、降低废水浓度,使废水 COD 浓度降低 40%以上,B/C 提高至 0.35 以 上; (2)开发和设计了针对高浓度有机废水的厌氧生物处理反应器系统,利用高效厌氧反应器技术提高反应器内微生物浓度、提高微生物对污染物的利用效率,使废水的 COD 去除率达到 90%以上,实现了在污染物削减的基础上对于资源的高效回收,沼气转化率达到 0.1-0.2 m3/kg,沼气成分达到 67%。成果在废水的高级氧化前处理、厌氧处理及资源化等方面实现了科技创新和技术进步,在国内外期刊上发表研究论文 50 余篇,SCI 收录 15 篇;申请发明专利 19 项,其中授权发明专利 14 项;另获授权实用新型专利 7 项。技术成果已在苏圣科技(无锡)有限公司、无锡市惠联科轮环保技术发展有限公司、无锡市碧天源环境工程有限公司和无锡江大技术转移工程公司等企业开展了推广应用。
江南大学 2021-04-13
稻米糊粉(白糠)高值化利用关键技术及装备集成
稻米糊粉是大米加工过程中的重要副产物,主要包含稻米糊粉层和亚稻米糊粉层,营养价值十分丰富,含有大量的蛋白质、膳食纤维、维生素和矿物质,其营养素含量是精白米的数倍到几十倍不等,是十分优良的食品原料及配料。稳定化加工后价格 0.6-1 万元/吨,开发成产品则利润更高,具有十分可观的经济效益。 但稻米糊粉层中的脂肪酶和过氧化物酶在碾米过程中极易激活,产生脂肪酸败现象,这是限制其商业化应用的主要因素。绝大多数富含糊粉层的米糠未被有效分离,与米糠一起以 0.2 万元/吨左右的低价出售用作饲料,未充分发挥其附加值,是一种巨大的资源浪费。  本项目针对传统稳定化方法处理稻米糊粉层得到产品货架期短、食味品质差、成本高等缺点,通过差异化分级、梯度瞬时灭酶等关键技术的研发,成功解决了稻米糊粉的稳定化问题,并成功挖掘其高值化商业卖点,将其作为功能性配料开发了代餐食品、固体饮料、烘焙以及面制品等系列产品。该项目的研究成果对于提高稻米附加值,促进大米加工企业创利增收,延伸稻米产业链具有重要意义。 
江南大学 2021-04-11
高效生物催化合成烟酸关键技术研发及产业化
烟酸又称维生素 PP 或维生素 B3,是人体必需的 13 种维生素之一,作为药物中间体及饲料或食品添加剂具有广阔的国内外市场,全球烟酸市场在 8 万吨以上,目前主要采用化学法生产。 本项目打通了生物转化 3-氰基吡啶制备烟酸的工艺路线,建成了国际上首条烟酸生物法生产线,技术水平达到国际领先。项目获得了自主知识产权菌种、建立了腈水解酶的高效表达和系统改造技术、构建了固定化和高浓度转化体系;腈水解酶发酵酶活及烟酸转化产量均为目前国际报道的最高水平。已建成年产2000 吨烟酸生物法生产线,相比传统化学合成工艺节约能耗 30%以上,降低污染物排放 70%以上。在 Catal Sci Tech,ChemCatChem,Crit Rev Biotechnol 等国内外期刊发表论文 20 余篇,1 篇入选BioMed 数据库 Highly accessed 论文;213受邀合编英文专著 1 部;申报国家发明专利 15 项,其中已授权 9项。 
江南大学 2021-04-13
生物可降解聚酯工业化生产及改性关键技术
江南大学化学与材料工程学院在生物可降解聚酯方面获得如下技术:聚对苯二甲酸-己二酸-丁二醇共聚酯(PBAT)、聚对苯二甲酸-丁二酸-丁二醇共聚酯(PBST)连续化工业生产技术;聚丁二酸丁二醇酯(PBS)、聚丁二酸-己二酸-丁二醇共聚酯(PBSA)中式间歇生产技术。同时针对以上聚酯开发出一系列商业化改性制品:PBAT(PBST)与淀粉改性膜制品(可堆肥降解垃圾袋、包装袋、泡沫塑料)、PBAT(PBST)与 PLA 改性膜制品(可降解地膜、保鲜膜、包装膜)、PBST(PBSA)改性纺丝制品(无纺布、编织袋)、PBS 改性制品(一次性注塑制品)。
江南大学 2021-04-13
生鲜食品综合保鲜包装关键技术及产业化
项目获中国包装科技进步奖二等奖、山东省科技进步奖三等奖、中国包装联合会“2011 中国包装产学研合作精品项目”。 1、项目简介 通过“十一五”国家科技支撑计划、“863”计划、教育部重点科学技术等项目的资助,开发了生鲜食品综合保鲜包装关键技术,集成产品预处理、产品生理特性调控、保鲜保质包装等多领域技术,在此基础上,研制开发了集预处理、产品整理供送、气调包装于一体的高产能高精度气调包装生产线,并成功实施产业化。 2、创新要点 高产能高精度气调包装装备技术。研发高精度气体混合控制系统、高效气体置换系统技术、产品整理供送包装一体化技术等,气体混合精度≤2.0%,气体置换率≥99.5%,包装速度达 1500pcs/h。产品物流保鲜包装成套工程化技术。 3、效益分析 对具备 10 台机床的小型车间而言,每年净提高产值 80 万元以上,截至到2010 年底,为企业创造经济效益 3 亿多元。 4、推广情况 已经推广,古巴国家制糖工业部、烟台格润新农业发展有限公司、航天测控基地“远望 3、6 号”、上海明珠湖生猪专业合作社等国内外 30 余家企业及机构。 授权专利: 1.全自动连续盒式气调包装机 200810156907.1 2.一种可食性多糖-蛋白复合包装膜及其制备方法 200910183338.4378 3.基于脂肪酶反应扩散的时间温度指示器 201120018210.5
江南大学 2021-04-11
针织绒类面料高效绿色生产关键技术及产业化
本项目立足自主研发,通过产学研合作,突破绒类面料高效绿色生产关键技术,实现了再回收纤维原料与色丝毛绒生产技术创新、数字化提花生产技术创新、零排放染色技术创新、碱减量聚酯回收技术创新与定型热量回收利用创新等多种集成创新技术,并将科研成果快速实施产业化。项目针对绒类面料生产程序繁琐、提花花型变换困难、生产污染严重等多个核心问题进行攻关,形成了再回收化纤原料与色丝生产绒类面料技术、绒类面料数字化提花生产技术、零排放染色技术、碱减量聚酯回收技术与定型热量再利用技术等五大主要关键技术。通过再回收化纤原料应用生产更加环保的绒类面料、通过色丝的应用免除染色工序,减小环境污染;通过绒类提花与 CAD 设计技术实现绒类面料的数字化提花生产,在丰富绒类面料提花图案同时,极大缩短提花变化与实现周期;通过轧染技术,实现绒类面料的连续化染色与零排放染色生产;通过超细纤维绒类面料在碱减量生产中溶解的聚酯回收再利用,在降低环境污染的同时,实现聚酯的循环再利用;通过定型过程热量传到办公区的空调供热,实现能量的循环再利用。基于以上技术,在国内首次研发出绒类面料高效绿色生产系统集成关键技术。 项目申请国家发明专利 16 项,其中获授权 10 项;发表重要学术论文 20 篇。项目总体技术达到国际先进水平。 项目成果已形成成熟绒类面料高效提花生产与绿色生产的关键工艺及装备,均已实现了产业化。成果应用五年来,企业新增产值 9.4 亿元,新增利税达 1.8亿元。生产工艺与装备在相关绒类面料生产企业推广、其产品迅速在服装、家纺等生产企业推广使用,用户反映良好,有较高的社会效益和经济效益,具有广泛的市场前景。项目的实施在提高绒类面料品质同时,还可减少传统绒类产品生产时的能源损耗和对环境的污染,达到节能减排的目的。项目推动了绒类产业升级与技术进步,促进了纺织行业的快速、协调和可持续发展。 
江南大学 2021-04-13
首页 上一页 1 2
  • ...
  • 38 39 40
  • ...
  • 667 668 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1