高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
城市污水生物膜强化脱氮多级A/O工艺
北京工业大学 2021-04-14
一种氮掺杂碳纳米材料、其制备方法及应用
本发明公开了一种氮掺杂碳纳米材料、其制备方法及其应用于 制备燃料电池阴极材料。所述氮掺杂碳纳米材料包括含氮杂环化合物 以及碳纳米材料,其中氮的质量含量在 2%至 10.4%之间。其制备方法 包括以下步骤:(1)将表面活化的碳纳米材料与含氮络合物,按照质 量比例 1:1 至 1:5 均匀混合,得到前驱体混合物;(2)将步骤(1)中 获得的前驱体混合物在保护气体环境下,升温至 800℃至 1000℃,煅 烧 2 小时至
华中科技大学 2021-04-14
汤渊源教授在有机-无机杂化铁电体精准设计上取得重要进展
南昌大学汤渊源教授在熊仁根教授提出的“托氟效应”理论的指导下,与江苏科技大学陈立庄教授合作,在有机-无机杂化型铁电体领域取得重要进展。通过精准修饰有机阳离子,成功地合成了新型非钙钛矿结构ABX3(A、B为阳离子,X为阴离子)铁电体[(CH3)3NCH2F]ZnCl3,这是首例ABX3锌卤盐铁电体。 钙钛矿型ABX3有机-无机杂化材料拥有丰富的性能,比如铁电性、压电性、光致发光、铁磁性等。其中,铁电性作为一种重要的物理性质,在非挥发性存储器、电容器、传感器等领域具有广泛的应用。除了钙钛矿结构,ABX3型化合物也可以结晶在其他结构里。比如无机的ABX3化合物可以结晶成辉矿石结构、刚玉结构、六方锰矿结构等。相应地,有小部分有机-无机杂化ABX3型化合物可以结晶成由BX3五面体或四面体构成的非钙钛矿结构。但是,在这些非钙钛矿型的ABX3化合物中却很少有铁电性的报道。这主要是由于对铁电体结构与性能的关系认识不够所导致的。因此,深入探究铁电体的构效关系,对于精准设计有机-无机杂化型铁电体具有重要意义。 根据诺埃曼原则,铁电体必定属于10个极性点群。因此,在晶体中引入极性分子或是极性无机骨架将会是设计铁电体一个非常有效的策略。团队基于前期工作的系统筛选,锁定了拥有极性结构的[(CH3)4N]ZnCl3。它的晶体结构中,所有ZnCl4四面体沿着同一个方向以共角的方式排列,形成极性的[ZnCl3]-n链。这与一维钙钛矿结构和硅酸盐结构不同,在这两种结构中偶极子被相互抵消。然而进一步的表征表明,[(CH3)4N]ZnCl3没有相变,且不具铁电性。另一个精准设计有机-无机杂化铁电体的策略是“托氟效应”理论,用电负性最强的F原子取代分子中的H原子,可以改变分子中原子间的相互作用,进而引入铁电性。受该理论的启发,研究者对[(CH3)4N]ZnCl3进一步修饰,用电负性较强的卤素原子F、Cl、Br、I来取代准球形有机阳离子[(CH3)4N]+上的H原子,获得了4例非钙钛矿结构的ABX3型化合物。其中,[(CH3)3NCH2F]ZnCl3被证明具有铁电性。对于[(CH3)3NCH2X]ZnCl3 (X = Cl, Br, I),没有可靠的证据显示他们具有铁电性。[(CH3)3NCH2F]+阳离子中电负性更强的F原子影响了[ZnCl3]n-链中的Cl原子,形成相对较强的F…Cl作用,这种卤-卤键连接了阳离子和无机链。这样,阳离子的翻转将会带动极性阴离子链的翻转,使得体系在两种极化状态之间转换的能量降低,所以[(CH3)3NCH2F]ZnCl3具有在外电场作用下可翻转的自发极化,即铁电性。相比于F原子,Cl、Br、I原子的电负性较弱,这种卤-卤作用在[(CH3)3NCH2X]ZnCl3 (X = Cl, Br, I)中不足以诱导出铁电性。这项研究为精准设计新型有机-无机杂化铁电体提出了新的思路。
南昌大学 2021-02-01
一种ZIF-8-SiO2杂化固定相的制备方法
本发明公开一种ZIF-8-SiO2杂化固定相的制备方法,首先以核壳结构的SiO2颗粒作为基体,在其表面修饰羧基,然后再通过控制反应条件,将ZIF-8材料修饰到SiO2颗粒壳层孔道内部,所得ZIF-8-SiO2颗粒孔道仍为原有SiO2核壳颗粒的孔道结构,且ZIF-8修饰层的生长速度和厚度可控,所制得ZIF-8-SiO2杂化颗粒的孔径在10nm以上,完全符合色谱分离所需色谱固定相颗粒孔径在10nm以上的要求,色谱分离柱效结果理想。
安徽建筑大学 2021-01-12
新型镀镍/镀铝/镀铬/镀铜金属蚀刻剂和去雾剂
成果与项目的背景及主要用途: 生产手机、 MP3 、汽车仪表等高档显示面板时,需要将视窗部分的镀镍、天津大学科技成果选编 镀铝、镀铬、镀铜等金属高效蚀刻去除,保证视窗无残留金属、通透性好,同时 面板上保留金属不能发生侧蚀。如果产品上残存黑色、黄色等物质,需要逐片擦 拭,生产效率低、劳动强度大。 本产品可将面板视窗部分所镀金属在一分钟左右去除干净,经清洗干燥后, 面板上不残存有色物质,防止侧蚀效果好。该药液应用于自动生产线,大大提高 了生产效率和产品合格率、降低生产成本。 技术原理与工艺流程简介: 利用反应配制技术,制造出各种药液,实现显示面板所镀金属的快速、干净、 可控的去除。 工艺流程简单,易实现,技术原理清楚。 技术水平及专利与获奖情况: 蚀刻产品通过严格的盐雾等测试,已经大量应用于国际多种知名品牌手机面 板的生产。 应用前景分析及效益预测: 与外购药液相比,该技术效益可观,同时产品质量容易控制,便于企业构筑 产品质量保证体系。 应用领域:电子配套产品的生产。 合作方式及条件:成熟技术成果转让。 
天津大学 2021-04-11
新型镀镍/镀铝/镀铬/镀铜金属蚀刻剂和去雾剂
生产手机、 MP3 、汽车仪表等高档显示面板时,需要将视窗部分的镀镍、镀铝、镀铬、镀铜等金属高效蚀刻去除,保证视窗无残留金属、通透性好,同时面板上保留金属不能发生侧蚀。如果产品上残存黑色、黄色等物质,需要逐片擦拭,生产效率低、劳动强度大。本产品可将面板视窗部分所镀金属在一分钟左右去除干净,经清洗干燥后,面板上不残存有色物质,防止侧蚀效果好。该药液应用于自动生产线,大大提高了生产效率和产品合格率、降低生产成本。利用反应配制技术,制造出各种药液,实现显示面板所镀金属的快速、干净、可控的去除。工艺流程简单,易实现,技术原理清楚。
天津大学 2023-05-10
硫磺沥青改性剂
本项目研制的硫磺沥青改性剂含有特殊的硫化氢抑制剂和塑化剂,在沥青混合料中可替代约30%的沥青原料,并有效地减小在生产和摊铺过程的发烟,同时降低生产温度到140℃,节能减排,且硫化氢逸出量指标好于国外同类产品先进指标。将硫磺沥青改性剂加入到沥青中明显改善和提高了沥青混合料稳定度,抗车辙能力提高一倍,同时沥青混合料的低温抗裂性有一定的改善,沥青混合料的水稳定性也得到提高。
东南大学 2021-04-10
固体碱催化剂
和废盐,且催化剂不易回收。发展的趋势是用固体传统的质子酸(硫酸等)和路易斯酸(AIC1。等)催化的催化过程中产生酸酸取代液体酸、用多相催化取代均相反应, 以减轻环境污染提高生产效益。本顼目所开发的固体酸具有如下优点:(1)催化活性高、催化剂用量少;(2)易与产物分离,重复使用高;(3)生产过程中污染少。并且在酯类香料的合成中显示很高的催化活性,如:丙酸异戊酯的收率可达98.2%;丁酸苄酯的收率可达96.9%;己二酸   二丁酯的收率可达98.O%以上。
南京工程学院 2021-04-11
液体酶稳定剂
该液体酶稳定剂通用性强,适用于多种酶制剂,并且通用于未经浓缩的酶液、中空纤维超滤浓缩或膜式超滤浓缩的酶液,都可在室温保存三个月至八个月,剩余酶活力在80%。具体技术指标为:1.未经浓缩的液体α-淀粉酶,室温保存9个月,剩余酶活力达80%以上。/line2.中空纤维超滤浓缩的液体α-淀粉酶,室温保存6个月,剩余酶活力达80%以上。/line3.膜式超滤的液体碱性蛋白酶,室温保存8个月,剩余酶活力在80%左右。/line4.未经浓缩的液体糖化酶,室温保存5个月,剩余酶活力接近90%。/line5.经中空纤维超滤浓缩的液体糖化酶,室温保存3个半月,剩余酶活力接近90%。未经浓缩和膜式超滤的酶液添加稳定剂后的液体酶稳定性明显好于经中空纤维超滤浓缩的液体酶。因此膜式超滤较好。实验证明,液体酶添加剂能提高酶的抗变性能力,促进变性酶的复性;不同添加剂之间有协同或拮抗作用,对稳定剂配方的筛选提供了理论依据。/line所用的添加剂价格低廉,来源方便,并具有通用性。主要设备是超滤浓缩装置及包装容器。厂房面积约200平方米。可通过技术转让或技术入股方式进行合作。
南开大学 2021-04-10
纳米荧光显影剂
研发阶段/n虽然具有荧光性能和磁响应性能的稀土类纳米材料可作为性能优良的显影剂,但是它们的生物毒性限制了其临床使用。羟基磷灰石(HAP)具有良好的生物相容性和生物活性,并且其晶体结构特别适合稀土离子掺杂,可以作为荧光稀土离子如Eu3+和磁响应稀土离子如Gd3+的基质材料。该课题组前期也开展了稀土掺杂HAP荧光纳米粒子的相关研究,证明其具有良好的生物相容性,可用于肿瘤细胞的标记。这些研究都证明稀土掺杂HAP纳米材料是一种性能优异的显影剂,而且多重功能的稀土元素共掺杂HAP可以同时实现多种类型的显影功能
武汉理工大学 2021-01-12
首页 上一页 1 2
  • ...
  • 30 31 32
  • ...
  • 195 196 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1