关于微腔表面非线性光学的研究
北京大学物理学院肖云峰教授与龚旗煌院士领导的研究团队在微腔非线性光学研究取得重要进展:首次实现有机分子修饰的二氧化硅光学微腔的高效三次谐波产生,比此前报道的二氧化硅微腔转换效率提高了四个量级,接近晶体微环腔三次谐波的最高转换效率。成果被《物理评论快报》以封面及编辑推荐形式亮点报道:Phys. Rev. Lett. 123, 173902 (2019)。论文题为“Microcavity Nonlinear Optics with an Organically Functionalized Surface” (https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.173902)。左图:二氧化硅微腔表面修饰有机共轭分子;右图:实验测得的激发光和三次谐波光谱图 三阶非线性光学效应是现代光学研究和应用中最重要的非线性光学过程之一,被广泛应用于实现光频梳、全光开关和量子光源等。二氧化硅回音壁微腔由于具有超高的品质因子和成熟的制备工艺,已经成为是现代光子学研究的重要器件。然而,由于材料的限制,二氧化硅三阶光学非线性响应较弱于多数晶体材料,这严重地制约了二氧化硅微腔器件的性能。另一方面,有机共轭小分子具有离域的电子系统,在光场激发下,离域电子表现出很强的非谐振动,从而具有很高的非线性响应系数。同时,回音壁微腔的表面倏逝场为微腔与外界物质相互作用提供天然的通道。因此,采用表面修饰技术,光学微腔和高非线性响应的有机分子形成连结;有机分子通过表面倏逝场作用,有效地调控微腔系统的非线性效应,从而提高微腔器件的性能甚至可能突破微腔材料的限制。 在该项工作中,研究团队通过采用两步反应法,实现了二氧化硅微腔表面均匀地修饰有机分子层,既有效增强了微腔表面三阶非线性系数,同时保持了腔的高品质因子特性。实验中,研究者采用最近发展的动态相位匹配技术,即基于腔克尔效应和热效应补偿非线性频率转换过程中本征的相位失配,实现泵浦光和谐波频率与热腔模频率的共振匹配,最终实验上观测到三次谐波转换效率达到1680%/W2,比之前报道的二氧化硅微腔的最高转换效率提高了四个量级,接近目前晶体微环腔转换效率的最高值。研究者进一步地在实验上揭示了三次谐波的增强来自表面修饰的有机分子:微腔三次谐波/合频转换效率显著依赖于泵浦光偏振,平均输出功率对比度达到50倍,这是由于有机分子偶极取向导致的偏振依赖响应。该工作采用的表面修饰技术和动态相位匹配方法可以普适地推广到其它微腔和光波导等体系中,在宽带可调谐非线频率转换和表面科学研究中发挥重要作用。
北京大学
2021-04-11