高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
艾迪思特智能融合信息终端TM-A
支持图片文字视频广播播放功能,任意终端接收后自动开启多媒体播放,任务结束后关闭设备; 场景联动:内置无线物联网关,可控制教室用电设备(灯光、空调、窗帘等); 高清实物展台:真实放大文件、试卷或书本内容; 远程管理,智能管理;
深圳市艾迪思特信息技术有限公司 2022-11-03
多架构(VDI/VOI/IDV)多融合桌面云
随着新信息技术的应用,我们走进云时代 云突破了IT基础设施的物理限制 云桌面技术的应用,让你拥有一台长在云上的电脑,本地没有主机,也看不见电脑CPU和硬盘 操作系统和应用运行所需的计算和存储能力都集中在云端数据中心 如果你是IT管理者 你是否在寻找—种高效的模式去部署、管理、维护大规模工作和学习的电脑? 你是否能灵活的、动态的调度电脑的资源配置,按需统一交付和回收? 你是否能保障电脑无故障运行的连续性和稳定性? 你是否拥有可集中管控、灵活且自由弹性扩展的平台,以满足不断变化的业务需求? 如果你是桌面使用用户 你或许希望能自由移动你的电脑,桌面和数据随身携带 你想要远程完成工作和学习任务 你想要更便捷的获得一台更高性能的电脑配置 一朵云,覆盖行业全场景桌面需求 多架构融合桌面云 传统桌面vs多架构融合桌面云 产品八大优势 产品核心技术 产品极致性能体验
武汉噢易云计算股份有限公司 2022-09-23
一对特异识别绵羊KRT25基因的多肽及其编码基因和应用
本发明公开了一对特异识别绵羊KRT25基因的多肽及其编码基因和应用。该多肽由多肽甲和多肽乙组成;所述多肽甲由16个TAL核酸识别单元组成,每个TAL核酸识别单元中具有一个双连氨基酸;所述多肽乙由15个TAL核酸识别单元组成,每个TAL核酸识别单元中具有一个双连氨基酸。本发明可实现在细胞或个体水平上对绵羊KRT25基因进行敲除或修饰,以解析绵羊KRT25基因的功能、构建绵羊KRT25基因突变库或获得相关疾病模型,为绵羊育种及医药研发服务。
青岛农业大学 2021-04-13
金属催化亚胺与一氧化碳共聚法合成多肽类材料
成果与项目的背景及主要用途 一种在金属催化下亚胺与一氧化碳共聚合成多肽类聚合物材料的新的、简捷的方法,不用氨基酸为原料,以廉价的亚胺和一氧化碳为单体,在金属催化下发生交替共聚,直接生成多肽,从而使合成多肽的成本大大降低。这一途径将可以避免繁杂的合成和活化氨基酸的步骤,使得多肽的合成和传统的方法(如开环聚合反应法)相比,被大大地简化。所得到的多肽类材料,在生物医学材料和制药等领域具有重要用途。 技术原理与工艺流程简介
南开大学 2021-04-14
MMP14双靶点高效结合肽及多肽结构序列的获取和用途
本发明公开了一种MMP14双靶点高效结合肽及多肽结构序列的获取方法和目标物的用途。从MMP14蛋白诱导表达的人成骨肉瘤MG63细胞中筛选和获得一组新型的双靶点MMP14和Zn2+的多肽,包括:基于MG63细胞靶向诱导表达MMP14的噬菌体随机十二肽库体外消减筛选,经3-5轮筛选,获得富集的双靶向MMP14和Zn2+的结合肽噬菌体和多肽结构序列。目标物作为先导分子用于疾病治疗药物研发和用于肿瘤诊断,还可用于蛋白质分离纯化、分子标签以及重金属污染生物修复、采矿等。
西南交通大学 2016-10-21
金属催化亚胺与一氧化碳共聚法合成多肽类材料
一种在金属催化下亚胺与一氧化碳共聚合成多肽类聚合物材料的新的、简捷的方法,不用氨基酸为原料,以廉价的亚胺和一氧化碳为单体,在金属催化下发生交替共聚,直接生成多肽,从而使合成多肽的成本大大降低。这一途径将可以避免繁杂的合成和活化氨基酸的步骤,使得多肽的合成和传统的方法(如开环聚合反应法)相比,被大大地简化。所得到的多肽类材料,在生物医学材料和制药等领域具有重要用途。 该方法是在高压釜中,以 1,4-二氧六环为溶剂,在 800psi 压力的 CO、50℃油浴以及在催化剂作用下,亚胺与 CO 共聚得到产物多肽。采用一种简单的金属钴化合物作催化剂,能有效地催化亚胺和一氧化碳的交替共聚,得到高分子量和低分散度的多肽类聚合物。方法简捷。 已取得的知识产权: 本项目得到国家自然科学基金资助,是一项具有原始创新性的科研 成 果 , 已 申 请 2 项 中 国 专 利 ( 申 请 号 200610129890.1 ,200710195204.5)和国际专利(申请号 PCT/CN2007/003465),还将对后续发现及时申请专利保护,因此将拥有该技术的全部知识产权。成果发表在化学刊物 Angew.Chem.,已受到学术界和一些国外公司的关注。 应用前景分析及效益预测: 应用行业:生物医学材料、制药、功能材料。该项目所提供的新型多肽类化合物,已经能够为生物医学工程领域提供一类新的重要的可供选择的材料。从长远来看,开发出多个新的有效的催化剂体系,实现更多类亚胺与一氧化碳的共聚,最终使该方法成为一种广泛有效的多肽的合成方法,将具有重大的社会和经济效益。 应用领域及能为产业解决的关键技术: 作为新的生物医学材料可能具有更好的生物兼容性,因而代替现有材料用于人工血管等方面。此外,还可被用作药物的糖衣以及具有药物缓释等功能。如能实现一般肽类的合成,其低廉的成本将有潜力替代用任何其它合成方法得到的该类产品。不用氨基酸为原料,而是以廉价的亚胺和一氧化碳为单体,从而使合成多肽的成本大大降低、方法大大简化。 技术产业化条件: 投资规模约 500 万元(不含基建投入)。
南开大学 2021-04-13
【央视新闻】吉速报丨融合创新赋能教育强国建设 第63届高博会在长春开幕
23日,第63届高等教育博览会(以下简称“高博会”)在长春开幕。作为我国高教领域规模最大、影响力最广的综合性博览会,本届展会通过资源聚合与模式创新,点燃推动教育强国建设、赋能东北全面振兴的重要引擎。
央视新闻 2025-05-23
羊草水孔蛋白及其编码基因与应用
羊草水孔蛋白及其编码基因与应用,目前对于羊草的研究仅限于人畜的食用及成份分析等方面,而将其作为耐旱植物对其分子生物学方面的研究还少见报道.羊草水孔蛋白,是具有以下氨基酸序列的蛋白质:(1)序列表中的SEQ IDNo:1;(2)序列表中SEQ ID No:1的氨基酸序列经过一个或几个氨基酸残基的取代,缺失或添加,且与SEQ ID No:1蛋白质序列具有相同活性的,由SEQ IDNo:1衍生的蛋白质.将本发明的水孔蛋白的编码基因转入其它植物,可增强转基因植物的抗旱能力.本发明应用于植物基因工程领域.
哈尔滨师范大学 2021-05-04
新型冠状病毒蛋白质组芯片
截止到2020年3月3日11时23分,我国累计已有新冠肺炎病例80302例,死亡2947人。我国的疫情防控已渐渐向好,但其它多个国家的疫情则呈快速上升和爆发趋势,引起了强烈关注,世界卫生组织总干事谭德赛28日在日内瓦宣布将新冠肺炎疫情全球风险级别由此前的高上调至非常高。基于流行病学数据,多名国内外专家预计新冠肺炎可能会长期流行。为了实现最终的有效防控,新冠肺炎的基础研究必须要迅速得到加强,其中尤为重要的两个方面是:1.对新冠肺炎康复人员血清中病毒特异性抗体的系统性分析;2.对病原-宿主相互作用的全局性研究。通过这些研究将可提供全面的免疫响应数据及提示病毒蛋白质的功能,为疫苗研发、中和抗体制备以及药物靶点的确定提供重要线索,进而加速新冠肺炎关键研究的进程。系统性的分析需要强力工具,包含新型冠状病毒(SARS-CoV-2)绝大多少甚至所有蛋白质的蛋白质组芯片是一个极佳的选项。据BioArt独家消息,上海交通大学系统生物医学研究院陶生策团队传来好消息。该团队对新型冠状病毒的全部27个预测的基因进行了密码子优化,并通过全基因合成得到了一套完整的表达克隆。经过多轮优化,到目前为止已成功表达纯化了其中的17个蛋白质,同时整合其他来源,该团队最终获得了20个新型冠状病毒的蛋白质。在此基础上于3月2日14时14分完成了首款新型冠状病毒蛋白质组芯片的构建(图1)。图1. 新型冠状病毒蛋白质组芯片。A. 芯片整体质控。一张芯片上有14个相同的点阵,可最多用于14个样本的同步分析;B. 点阵中蛋白质的排布;C. 实际样本的初步测试结果。新型冠状病毒蛋白质组芯片对于深入研究病毒-宿主相互作用、病人的病毒特异性血清反应、疫苗效果等具有重要价值。该团队将秉持开放的心态,积极地与相关科研团队和科技企业合作,争取在最短的时间内最大程度地发挥蛋白质组芯片的高通量全局性分析优势,以期对疫情防控有所帮助。该芯片的主要应用点包括但不限于:1. 血清学分析。采用该芯片分析病人和康复人员血清或血浆,可全面地研究新型冠状病毒引发的病毒特异性抗体响应及其动态变化,将帮助我们理解机体的免疫响应过程,发现病毒的优势蛋白抗原,对确定哪些康复人员的血浆有更好的保护效果可能也会有帮助。2. 疫苗评估。疫苗的作用是预先建立免疫防御能力。无论是动物实验或是临床试验,动态监控疫苗注射后血清中针对各种蛋白组分的抗体水平,并将其与防御能力进行关联分析,将助力疫苗的筛选和前期评估,加速疫苗的开发进程。3. 病毒-宿主相互作用研究。利用该芯片可在全局水平上进行宿主关键蛋白与病毒蛋白质相互作用研究、翻译后修饰调控研究,以助力对病毒侵染、复制合成等关键机制的揭示,并给出有潜力的靶蛋白用于药物开发研究。该团队积极响应国家号召,把研究成果第一时间公开,希望能有助于疫情防控,详细数据和进一步结果将会在近期发布。
上海交通大学 2021-04-10
新型蛋白酶酶法制备明胶技术
已有样品/n本项目筛选获得了一个蛋白酶,并利用该酶建立了制备明胶的新工艺。与传统酸碱法相比,该工艺能够节约淡水50%以上,生产周期从60-100天缩短为5-10天,同时大幅降低酸碱试剂的消耗量,与普通酶法相比,成本降低,产品质量和得率将大幅提高。本技术适用于现有明胶厂的工艺升级替代。总投资额600-1000万元,综合成本降低20%,三废排放降低30%。
中国科学院大学 2021-01-12
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 59 60 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1