高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种基于自蔓延反应的 3D 打印方法
本发明涉及自蔓延反应与 3D 打印技术,具体地说是涉及一种基于自蔓延反应的 3D 打印方法。整 个打印过程利用自蔓延化学反应放热,完全(或部分)不需要外热源。打印过程中通过快速自动波燃烧 的自维持反应得到所需成份和结构的产物。打印可控性好,通过改变热的释放和传输速度来控制过程的 速度、温度、转化率和产物的成份及结构。将自蔓延反应与传统 3D&nbs
武汉大学 2021-04-14
自然界中首例 [6+4] 环加成反应的酶
鉴定首个高阶环加成酶,拓展了环加成酶的认知 一、项目分类 重大科学前沿创新 二、成果简介 南京大学化学化工学院梁勇教授,生命科学学院谭仁祥教授和戈惠明教授的科研团队,发现了抗幽门螺旋杆菌的潜在药物-汉城霉素并对其生物合成途径进行深入研究。通过多菌株基因组序列比对,对汉城霉素类生物合成基因簇进行了鉴定,利用微生物学,分子生物学、底物化学衍生化、体外酶促反应等手段从该基因簇中鉴定出一个新颖、可催化高阶环加成反应的酶。团队基于蛋白质晶体数据,量子化学计算和蛋白质定点突变技术,对该酶促动力学过程进行了深入解析,最终确定该酶通过“双过渡态”来同时催化产生6+4和4+2环加成产物。该特殊高阶环加成酶的发现,解答了“自然界中是否存在酶催化的高阶环加成反应”,这一持续五十余年的谜题。这类酶的发现将进一步拓展人们对周环反应酶的认识,启发科学家们将来利用和改造周环反应酶来实现有价值的分子转化。 成果于2019年4月以Letter形式发表于Nature。F1000评述该研究“鉴定首个高阶环加成酶,拓展了环加成酶的认知”,诺贝奖得主霍夫曼评述“这是在酶促反应中直接观察到的[6+4]环加成产物的首个例子……,该研究对酶促高阶环加成研究具有深远影响”。
南京大学 2022-08-12
一种新型碟式太阳能反应接收器
目前常用的太阳能反应接收器为碟式太阳能反应接收器。然而,由于接收器一侧接收经过抛物面聚光器汇聚反射的太阳光照射,另一侧不接收太阳光辐射,导致接收器内表面产生极大的温度梯度。从而导致该碟式太阳能反应接收器催化剂无法完全处于最适催化反应温度下,影响热能反应进程,难以高效地进行太阳能与化石燃料的热化学互补。 成果为自主设计发明了一种新型碟式太阳能反应接收器。在该反应接收器中催化室是由多层催化剂载体形成的凹形结构,且每层催化剂载体设有多个孔洞,每层催化剂载体中的孔洞表面孔隙率不同涂敷催化剂的材料不同,使得催化剂能够处于最适反应温度,优化了碟式太阳能反应接收器的温度分布,提高了热化学互补的反应效率,使得该碟式太阳能反应接收器更加经济、安全。 创新点 在现有的碟式太阳能反应接收器基础上,创新性地改进其结构和布置。将催化室分为多层催化剂载体形成的凹形结构,各层结构不同,每层所述催化剂载体中的孔洞表面涂敷的催化剂的材料、质量、孔隙率不同。每层的催化剂都能够处于最适反应温度范围,从而保证每层催化剂都能在较适宜的温度下进行高效的太阳能热化学反应。 市场前景 氢能因具有清洁无污染、可储存、高热值等优势,成为最具潜力的二次能源以及清洁能源载体。氢能可以广泛应用于交通、工业、建筑和电力等各个领域缓解了能源危机、减轻环境污染。但在我国高效制氢滤氢技术仍有待提高。该成果提出的碟式太阳能反应接收器可稳定高效地用于热化学反应制氢将氢能作为太阳能的载体,将制氢和太阳能利用相结合完全适应国家“双碳”目标下的发展方向。克服了太阳能分散、间断以及不稳定的缺点提升了太阳能的品位。所以其拥有广阔的发展和利用前景。
华北电力大学 2023-08-22
一种非均相催化芳胺乙酰化反应的方法
(专利号:ZL 201410545694.7) 简介:本发明公开了一种非均相催化芳胺乙酰化反应的方法,属于化学材料及其制备技术领域。该乙酰化反应中芳胺与乙酸酐的摩尔比为1:1.5~3,非均相催化剂的摩尔量是所用芳胺的3~5%,室温下反应18~70min,反应压力为一个大气压,反应后抽滤,滤渣用乙醇洗涤,收集的滤液通过高效液相色谱分析芳胺的转化率以及产物N-乙酰芳胺的选择性和产率。本发明与其它催化剂催化芳胺乙酰化反应的方法相比,具有反应选择
安徽工业大学 2021-01-12
金属有机化学气相沉积工艺和反应器设计
项目简介 本成果基于金属有机化学气相沉积(MOCVD)GaN 生长的化学反应动力学原理和传热 传质原理,设计了一种新的 GaN 生长的 MOCVD 工艺,以及相应的新的 MOCVD 反应器。新 工艺可以大大减少气相寄生反应、提高衬底上方的温度和浓度均匀性,加大生长窗口。 改进了传统的 MOCVD 工艺窗口窄,对温度和浓度过于敏感等缺点,属国际首创。围绕该 成果已申请多项发明专利。 性能指标
江苏大学 2021-04-14
连云港百仑生物反应器科技有限公司
连云港百仑生物反应器科技有限公司位于江苏省连云港市赣榆区墩尚镇临港自控设备产业区,地处世界先进制造业中心的腹地,是提供成套生物反应器(发酵罐)的制造商与技术服务商,是上海百仑生物科技有限公司的全资子公司;产品包括生物反应器(发酵罐)、动物细胞生物反应器、生物反应器摇床、配液罐、搅拌罐、灭活罐、及生物制药车间整体装备等。我们在上海嘉定华亭、江苏连云港有三大制造基地,为全球客户提供优质的产品及优良的服务。中国梦-百仑梦。 百仑产品的每一个细节都体现着处处为客户着想的原则,设备零部件尽量采用标准件,关键配件基本与欧洲产品一致,以保证产品的质量,同时优化管路,方便运行中的维护、保养,降低客户的使用成本。 系统紧凑、美观,占用空间少;简化手动操作部分,降低工作量,减少操作事故的发生等等;安全、简洁、精密、可靠、耐用是我们制造产品的原则。 希望我们的网站不仅为公司和产品提供信息渠道,也是一个桥梁,连接世界各地已经及即将对我们的产品和服务感兴趣的公司、大学、研究机构和科学家,我们非常愿意能听到您对我们产品的建议和要求,如果您对我们的产品及服务有任何兴趣,特别是在细节方面,请让我们知道,如果您希望我们改进我们的产品,我们将非常重视您的意见,请让我们知道。 有了您的支持,使我们成为一个受员工热爱的企业---一家高品质、以技术为核心、以质量为生命、以服务为驱动的生物反应器供应商,使我们成为一个可持续发展的优秀企业。 百仑追求财务自主平衡,追求客户、员工、股东三位一体共同发展,不追求利润最大化。
连云港百仑生物反应器科技有限公司 2021-12-07
采用气液两相天然气为燃料的内燃机燃料输送方法
成果描述:本发明公开了采用气液两相天然气为燃料的内燃机燃料输送方法,将液态压缩天然气源和气态压缩天然气源通过绝热输送至一绝热共轨,在绝热共轨中完成混合后经一电控喷油器输送至气缸:进入绝热共轨(5)的燃料有液路和气路两路:液路由液态压缩天然气瓶(1)通过绝热低压管(2)和绝热压力泵(10)输送至绝热共轨(5);气路由气态压缩天然气气瓶(7)通过相应管阀进入绝热共轨(5)。本发明使气液两相天然气在进入气缸时发生闪蒸沸腾,并在不同工况进行两相天然气的气液组分实时设计控制。因燃烧的是气液两相天然气,故CO、CO2、PM排放低,无NMHC;采用压缩过程喷射,HC排放低;缸内温度低,NOX排放低;具有极低的排放性。市场前景分析:新能源交通工具技术领域。与同类成果相比的优势分析:技术先进,性价比较高。
西南交通大学 2021-04-10
深海天然气水合物一体化开发模拟实验系统
1 背景 天然气水合物是继页岩气、致密气、煤层气等之后潜力巨大的接替能源,可分为成岩型和非成岩型两类,其中非成岩型占76.5%以上。国内外天然气水合物开采技术研究和试采工程以降压法为主,但如果采用降压法开采海洋非成岩天然气水合物,水合物将无序分解且不可控,进而面临环境、装备、生产、工程以及地质等风险。为此,中国工程院周守为院士带领团队世界首创提出海洋非成岩天然气水合物固态流化开采技术,利用水合物采掘、碎化、海水引射流化、泥砂分离回填、浆体举升、平台深度分离再回填技术工艺,将非成岩不可控水合物藏转变为密闭管道内可控水合物藏,实现了“顺其自然、变害为利、变不可控为可控”的安全绿色开采。进而,团队针对海底浅表层水合物到中深层泥质粉砂水合物再到深部地层成岩型水合物以及下覆游离气的储层系统,在世界上首次创新提出深海天然气水合物固态流化~降压法一体化开发技术。 2 深海天然气水合物一体化开发模拟实验系统 发明深海天然气水合物一体化开发模拟实验方法及技术,研制成功全球首个具有完全自主知识产权的深海天然气水合物一体化开发大型物理模拟实验系统(压力0~16MPa、温度-10~60℃、可视化),实现了1500m水深固态流化~降压法一体化开发全程模拟。实验系统包括:水合物大样品快速制备、破碎及浆体调制模块,水合物浆体高效管输与分离模块,实时图像捕捉、数据采集及安全控制自动化模块。 水合物大样品快速制备、高效破碎、浆体调制“三位一体”实验方法和技术,20h内可快速制备1062L水合物样品; 水合物浆体保真运移方法和技术; 水平段56m、垂直段30m分段组合、逐点加密、多次循环、多次降压、多次升温的水合物颗粒、泥砂、分解气、配制海水复杂浆体管输模拟实验方法和技术。 首次系统开展深海天然气水合物固态流化~降压法一体化开发实验,创新形成从浅表层水合物到中深层泥质粉砂水合物再到深部地层成岩型水合物以及下覆游离气的全链条、一体化开发理论。 2017年5月,全球首次海洋非成岩天然气水合物固态流化试采在南海神狐海域成功实施。 3 应用范围 依托大型物理模拟实验系统,在全球首次系统开展深海天然气水合物固态流化~降压法一体化开发模拟实验,证明了固态流化~降压法一体化开发技术原理科学可行、开采工艺可行,为指导海洋天然气水合物和油气一体化勘探开发、研制深海天然气水合物高效开发系列装备提供了理论依据和关键参数。 4 前景及经济社会效益 通过攻关为深海泥质粉砂天然气水合物安全、高效开发提供方法与理论创新,为天然气水合物固态流化~降压法一体化高效开发评价提供重大实验系统,促进浅表层、中深层天然气水合物与下覆游离气一体化开发系列重大装备研制,推动集成该方法、理论、技术、装备成为我国引领世界天然气水合物商业开采的前沿技术。
西南石油大学 2021-05-10
天然高分子(壳聚糖、透明质酸和寡糖)的改性及加工技术
以天然高分子壳聚糖、透明质酸等为原料对其进行改性使其溶解在水、油(普通有机溶剂)等类衍生物,扩大了其作为生物医用材料的应用。然后还以新的生物材料制备方法光聚合方法、电纺丝方法、超临界聚合等方法对改性后的衍生物进行加工,使得其可以应用在生物医用材料如皮肤烧伤敷料、药物控释、人工组织工程支架等生物材料领域。并且还开展了光固化超硬、超耐磨、自清洁材料,光聚合药物缓释材料,光聚合有机高分子纳米微颗粒,光聚合信息存储材料等项目的研究。 溶解性:可溶解水、乙醇等12种有机溶剂;聚合速率,可光聚合壳聚糖单体最大转化率92%,聚合速率12秒;制备材料为无毒。用于食品包装等,生物医药,生物医用材料等,开发前景使用性能优良,具有广阔的市场前景。以壳聚糖等为主要原材料,主要设备是常温反应釜。若生产规模为100吨/年,设备投资约10万元,厂房面积需300m2,动力100KW,操作人员约3人。产品综合成本约80000~120000元/吨,市场平均售价约355000~460000元/吨,年利润约400~600万元,具有一定的经济效益。
北京化工大学 2021-02-01
一种能充分利用液化天然气冷能的蓄冷冷库系统
本发明公开了一种能充分利用液化天然气冷能的蓄冷冷库系统,它包括液化天然气气化系统、乙二醇循环系统和冷水循环系统,它还包括蓄冷系统和制冷系统,其中,(1)液化天然气气化系统包括液化天然气—乙二醇换热器;(2)乙二醇循环系统包括两个串联回路;(3)冷水循环系统包括水循环管路;(4)蓄冷系统包括蓄冷循环管路;(5)制冷系统包括经冷凝器的出口依次与压差调节阀、循环水泵、止回阀、蒸发器、板式换热器以及冷凝器的进口相连的制冷循环管路。本发明的优点:该系统在不影响液化天然气气化的前提下,起到液化天然气冷量削峰填谷的功能,有效改善制冷循环的能效比,充分保证了制冷性能稳定。
天津城建大学 2021-04-11
首页 上一页 1 2
  • ...
  • 38 39 40
  • ...
  • 52 53 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1