高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
甘蓝型杂交油菜新品种SZ1126
成果描述:SZ1126为双低甘蓝型油菜杂交组合(S17A×R336)。母本为细胞质雄性不育系,S17A是波里马细胞质雄性不育系与双低保持系M17多代回交而成,M17为双低保持系S07-4与自育早熟双低品系214-7杂交选育而成。父本为R336,系(中油杂3号×84100-18)×72-2(早)杂交培育而成的细胞质雄性不育恢复系。SZ1126是经2011、2012两年正规品比试验入选。已进入四川省预试。采用三系法制种。高产优质,早熟。适宜于四川平坝、丘陵地区及生态条件相近的其他地区推广种植市场前景分析:应用于农业生产。目前生产上急需早熟油菜品种,优质高产油菜种子在农业生产上具有广阔的市场前景。与同类成果相比的优势分析:国内先进
四川大学 2021-04-11
一种缩短杂交柑桔童期的方法
本发明涉及一种缩短杂交柑橘童期的方法,它包括培育杂种实生苗至长出二片真叶和二级根系,再在与 接穗亲缘关系近,且无病虫害的,离地100cm以上,直径3cm以上的柑橘树枝作上高位嫁接,最后再进行树 形控制和环剥促花等后期管理步骤。本发明方法将杂交柑橘的童期缩短到了 2年左右,部分杂交柑橘的童期缩 短为1年时间,相比较现有的杂交柑橘育种苗的栽培方法,大大缩短了育种周期,加快了柑橘杂交育种的 进程。
西南大学 2021-04-13
杂交油菜新品种华油杂9号
可以量产/n华油杂9号是利用不育系986A和恢复系7-5配制的高产、优质、抗(耐)病性强、抗倒伏、适应性广的杂交油菜新品种。2002-2004年在全国长江下游区域试验中,两年平均亩产170.84kg,比对照"中油821"增产24.57%,连续两年居参试品种首位,芥酸含量0.56%,硫苷含量22.57μmol/g,含油量41.34%。2003年通过湖北省品种审定。2004年通过全国品种审定,2005年通过湖北省品种审定,2008年通过贵州省和湖南省品种审定,2009年通过重庆市品种审定。技术水平:专利
华中农业大学 2021-01-12
苹果杂交种子层积温度控制系统
本实用新型涉及苹果杂交种子层积温度控制系统,包括层积装置、降温装置、水泵和电动三通阀,层积装置包括第一内胆,第一内胆的外部设置有冷却管,冷却管从左至右整齐排布在第一内胆的底部,并且从第一内胆的底部从下至上延伸,整齐的缠绕在第一内胆的外壁上,冷却管的外侧设置有第一保温层;降温装置包括第二内胆,第二内胆内盛放有冰块,第二内胆的外侧设置有第二保温层;冷却管的进水口连接到水泵的出水口,水泵的进水口分别连接到电动三通阀的第一出水口和降温装置的出水口,电动三通阀的第二出水口连接到降温装置的进水口,三通阀的进水口连接到自来水的出水口。本实用新型的结构简单,体积小,成本低廉,适合于小规模层积实验。
青岛农业大学 2021-04-13
杂交稻育性控制的分子遗传基础
一、项目分类 重大科学前沿创新 二、成果简介 该成果围绕杂交稻育性遗传控制的关键问题,包括细胞质雄性不育与恢复性和籼粳杂种不育与亲和性的分子遗传基础,开展了系统研究并取得了创新性重要成果,大大发展了作物遗传育种理论和促进了杂交育种实践。 一、克隆了最广泛应用的野败型细胞质雄性不育(CMS)基因WA352及其育性恢复(RF)基因Rf4,揭示了植物孢子体型CMS/RF系统的分子作用机理。成果被评述“在作物杂交育种和发展育种新策略具有重要的理论和实践意义”。 二、克隆了包台型CMS基因orf79及其恢复基因,阐明了植物配子体型CMS/R系统的分子作用机理。成果被认为“提供了植物核质互作的分子机制的新视点”。 三、克隆了控制籼粳稻杂种雄性不育的基因Sa ,发现Sa 是由2 个相邻基因SaM和SaF 组成的复合座位,揭示出此类复合座位是控制植物杂种不育的普遍性分子遗传基础。成果被评论为“在植物杂种不育机理研究方面做出了重要贡献”。 该成果在Nat. Genet, Plant Cell, PNAS, Mol. Plant, Annu. Rev. Plant Biol.等发表论文25篇,8篇代表论文总他引836次,被Nature, Science等刊物SCI他引616次,单篇最高SCI他引288次。获授权发明专利6件,成果受到学术界的高度评价,被4篇专题文章评述,被“F1000”评论5次,入选科技部973计划十周年纪念活动代表性成果,项目成果被多家育种单位应用并培育出杂交稻新品种。相关研究成果大大促进了植物分子遗传学的发展,并在杂交稻育种中发挥了重要作用。 该成果荣获2018年度国家自然科学奖二等奖。
华南农业大学 2022-08-15
甜玉米杂交种华甜玉4号
可以量产/n该品种熟期中熟偏早,从播种至吐丝约70天。幼苗叶鞘绿色。株高240cm,穗位高94cm,株高与穗位适中,正常株型,根系发达。空秆率低(2.4%),略有双穗(3.2%)。对大斑病的抗性为抗-中抗(1-3级),对小斑病的抗性为抗至中抗(1-3级),抗青枯病(1级),抗穗腐病(1级),抗-中抗玉米螟(1-3级),抗倒性中等。该组合鲜果穗较大,苞叶长度适中,果穗覆盖好,穗长19-20cm,,穗粗4.6cm,穗行数14-16行,鲜籽粒百粒重30克,籽粒深度1.0cm。在中等肥力及管理水平下一般亩产
华中农业大学 2021-01-12
快速鉴别杂交水牛染色体核型的技术
亚洲水牛包括河流型和沼泽型两个亚种。水牛产奶量与荷斯坦牛相比,仅为其一半,沼泽型水牛的产奶量更低。在现代化养殖的条件下,仅靠自然繁殖是远远不能满足需要的,因此一般都会引进河流型水牛进行杂交以提高水牛的繁殖性能和产奶量。河流型水牛染色体数目是50,而沼泽型水牛为48。两个亚种之间会杂交产生染色体为49的后代,这些后代之间是可育的,相互杂交会产生48、49和50三种不同染色体数的后代。3种不同核型的水牛繁殖性能和产奶量有显著的区别,若通过核型水平对水牛进行选择,那么对杂交水牛群的整体繁殖能力将有显著的提升,辨别杂交水牛核型数也显得非常重要。传统鉴定核型较为繁琐,周期长,费时费力,成本也很高,检测大群体杂交水牛便非常麻烦,不符合现代化大规模养殖的发展方向。该技术根据在水牛的亚种杂交中,不同核型的杂交水牛在特定染色体上的基因会有所区别,这些区别会体现在碱基序列上的理论,依据分子标记的应用和杂交水牛核型分析,将二者联系起来,建立利用分子标记快速检测杂交水牛核型的方法,可快速方便大规模检测杂交水牛的核型,改良群体结构,从而提高繁殖和泌乳性能,加快杂交水牛的品种改良速度。 该项目能够简化水牛染色体核型程序,减低检测成本和检测时间,适合现代大规模奶水牛养殖场的应用,显著缩短杂交水牛改良的速度,提高杂交水牛的繁殖效率和产奶量,降低饲养成本。经济效益显著。 成果完成时间:2016年1月
华中农业大学 2021-01-12
新西兰杂交鲍育苗及养殖设施设备项目介绍
1、新西兰杂交鲍育苗技术 198 本项目开发的新西兰鲍新品种引进和杂交新品种的培育在很大程度上满足 养殖业对鲍鱼新品种的需求,该杂交鲍表现出生长速度快(55mm/年)、抗逆 性强(在温度 27-29℃范围内死亡率低于 5%)、死亡率低的特点,目前杂交鲍 苗已经进入产业化推广阶段,在山东、浙江、福建、辽宁等地建立了苗种推广 基地。 2、海水养殖循环系统技术 海水养殖循环系统是一种先进的工厂化养殖模式,指在一套全封闭或半封 闭的海水养殖系统中进行海洋生物的养殖或苗种的培育。该系统主要特征为水 体的循环利用,通过各种高科技手段,控制养殖生物的生活环境,进行科学管 理,从而摆脱土地和水等自然资源的条件限制,是一种高密度、高单产、低投 入和高效益的养殖方式。 该系统具有以下特点: (1)节能环保:摆脱依靠煤炭加热升温,采用地源热泵或水源热泵; (2)用水量少:养殖海水可循环使用,日换水率低于 5%; (3)占地少,降低对海边土地的依赖性; (4)易于控制生长环境,贝类生长速度快; (5)饲料利用率高; (6)不受外界气候影响,可实现全年生产; (7)排放的废水废物少,能集中处理。
山东大学 2021-04-13
新西兰杂交鲍育苗及养殖设施设备项目介绍
1、新西兰杂交鲍育苗技术本项目开发的新西兰鲍新品种引进和杂交新品种的培育在很大程度上满足养殖业对鲍鱼新品种的需求,该杂交鲍表现出生长速度快(55mm/年)、抗逆性强(在温度27-29℃范围内死亡率低于5%)、死亡率低的特点,目前杂交鲍苗已经进入产业化推广阶段,在山东、浙江、福建、辽宁等地建立了苗种推广基地。2、海水养殖循环系统技术海水养殖循环系统是一种先进的工厂化养殖模式,指在一套全封闭或半封闭的海水养殖系统中进行海洋生物的养殖或苗种的
山东大学 2021-04-14
通过种间杂交获得高比例雄性泥鳅的技术
该成果提供了一种通过种间杂交获得高比例雄性泥鳅的方法,通过该方法可获得高比例的雄性杂交泥鳅。与现有的方法(如三系配套法)相比,该专利所需要的育种世代数少,通过一代杂交即可获得高比例的雄性泥鳅,同时方法简单、高效、可重复性强;该专利不需要借助激素投喂性反转技术、雌核发育和染色体加倍等技术,也不必借助测交、回交和自交等手段,不存在食品安全问题。 市场预期:单性泥鳅群体预期具有优良的生长性状,并且该专利制备的高比例雄性泥鳅是三倍体,因此具有生态上的意义。该专利预期可创造不小的经济效益。 成果完成时间:2016年1月
华中农业大学 2021-01-12
首页 上一页 1 2 3 4 5 6
  • ...
  • 9 10 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1