高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种交流电机变开关频率 PWM 转矩脉动控制方法
本发明公开了一种适用于交流电机的变开关频率 PWM 转矩脉 动控制方法,该系统主要包括转矩脉动预测模块与开关周期更新模块。 本发明以 PWM 转矩脉动峰值为控制对象,基于两电平电流纹波实时 预测模型,建立了 PWM 转矩脉动预测算法。应用该预测算法,以 PWM 转矩脉动峰值为控制对象,改变两电平电压源逆变器开关频率。相对 于固定开关频率 PWM 控制(CSFPWM),变开关频率 PWM 控制 (VSFPWM)可有效降低逆变器平均开关频率,从而减小开关损耗,同 时可有效改善电机驱动系统的 EMI 噪声
华中科技大学 2021-04-14
基于模型预测的双凸极永磁同步电机直接转矩控制方法
本发明公开了一种双凸极永磁同步电机的新型模型直接转矩预 测控制方法,具体为:采集双凸极永磁同步电机的定子电流和转子角 速度;分别在八组逆变器开关矢量信号下,结合定子电流和转子角速 度,依据八种开关状态下电流变化量及微分量与电压和电流之间的约 束关系,预测出每种逆变器开关矢量下一时刻的电机输出电流;基于 直接转矩控制理论,进一步预测每种逆变器开关矢量下一时刻的机转 矩和电机磁链;以转矩和磁链波动总量最小为目标,合理选择出相关 电压矢量,实时控制逆变器工作。本发明能够有效降低开关频率及损 耗,并减小电机
华中科技大学 2021-04-14
基于模型预测的双凸极永磁同步电机的电流控制方法
本发明公开了一种双凸极永磁同步电机(DSPM)的电流控制方 法,包括如下步骤:得到八组逆变器开关矢量信号;在当前时刻 k, 在每一组逆变器开关矢量信号下,预测下一时刻 k+1 的 p 相定子电流 其中,p 表示电机 A、B 和 C 相;在每一组逆变器开关矢量信号下, 根 据得到 d 轴和 q 轴的电流预测值;在每一组逆变器开关矢量 信 号 下 , 计 算 下 一 时 刻 k+1 的 d 轴 预 测 电 流 误 差 选取转矩波动和磁链波动总量最小时的 开关矢量信号作为逆变器开关的驱动信号,实时控制逆变
华中科技大学 2021-04-14
一种基于脉冲反馈检测电机运动学参数的方法
本发明公开了一种基于脉冲反馈检测电机运动学参数的方法。 通过连续采集信号读取时刻前的 N 个时刻的脉冲数,将采集的 N 个脉 冲数及其对应的时刻线性拟合成 N-1 次函数,得到电机位置与时间的 关系函数,对电机位置与时间的关系函数求一阶导数,得到电机速度 与时间的关系函数,对电机速度与时间的关系函数求一阶导数,得到 电机加速度与时间的关系函数;根据信号读取时刻是否与脉冲计数时 刻同步,并代入相应的约束条件,得到电机位置、速度和加速度的检 测结果。本发明能同时计算出信号读取时刻的电机位置、速度和加速
华中科技大学 2021-04-14
一种无刷双馈感应发电机转速估计系统
一种无刷双馈感应发电机的转速估计系统,属于无刷双馈感应 发电机控制技术领域,目的在于省去无刷双馈感应发电机控制系统中 的转速传感器和转子位置传感器,提高无刷双馈感应发电机运行的鲁 棒性,降低系统的硬件成本和维护成本。本发明包括电压变换模块、 电流变换模块、PW 电压正序基波提取器、CW 电流基波提取器、电压 幅值归一化模块、电流幅值归一化模块、相位混合器和转子位置锁相 环。本发明既适用于无刷双馈感应发电机独立发电模式,也适用于并 网发电模式;既能用于无刷双馈感应发电机空载运行时的转速估计, 也能用于
华中科技大学 2021-04-14
一种网络化的多轴电机同步控制装置及方法
本发明公开了一种网络化的多轴电机同步控制装置及方法,其装置包括脉冲采集模块、控制器模块、同步串行差分总线、多轴模块、伺服电机驱动模块和人机交互模块;通过包括脉冲采集模块采集主令电机输出的脉冲信号经过光电隔离处理后发送到控制器模块,控制器·746·模块对接收到的脉冲信号进行周期性的采样计数,将脉冲数通过同步串行差分总线发送给多轴模块,多轴模块根据当前的数据帧以及从动电机的反馈脉冲信号生成 PWM 控制信号
华中科技大学 2021-04-14
一种固定音圈电机直驱式 X-Y 微动平台
本发明涉及一种直线电机直驱的二维微动平台,为一种固定音圈电机直驱式 X-Y 微动平台,包括基座、音圈直线电机、X 向运动平台、Y 向运动平台、解耦部件和光栅尺等。音圈直线电机直接驱动 X-Y二维微动平台;X 方向和 Y 方向音圈直线电机均固接于底座,通过解耦部件实现 X 向和 Y 向的运动;利用光栅尺来检测电机位置。本发明为提高运动速度和运动精度,屏弃了传统的旋转电机传动机构,采用直线电机直接驱动;为降低运动惯量,设计了解耦部件,X、Y 向直线电机均固定来实现 X-Y 二维运动;为实现高精度、高稳定
华中科技大学 2021-04-14
新型高效免维护垂直轴直驱的家用风力发电机
利用“特殊空气动力学原理”,成功实现 H 型结构设计,叶片选用飞机翼形形状,在风轮旋转时,不会因变形而改变效率,该产品适合运行风速范围扩大到2.5~25m/s,具有低风速运转、发电量大、占地空间小、安装方便、寿命长、经济性好等特点,应用场合广泛,可应用在学校、机关、厂矿及普通家庭。
上海理工大学 2021-01-12
新工科电力电子与电机控制教学实验台YXMBD-XEM500
实验平台能满足高等院校“电力电子技术”、“半导体变流技术”、“电机控制(直流电机调速、交流电机调速及变频调速)”等课程实验教学。 系统特点: 更精细的模块化单元封装 采用更为美观、集成度高的封装形式; 模块化更合理,数字化更突出。 更完善的安全保护机制 具备硬件保护和软件保护双重保护,可靠性高,软件保护可大大减少器件的损坏,可避免出现经常换器件的麻烦。 更细致的实验指导教程 创新的交互式实验课程软件,提供进行实验所需的各种支持。它不仅提供实验过程指导,还提供相关理论知识讲解介绍,记录测量结果,并可导出各类数据; 理论仿真验证与实际元件实验验证相结合; 在Matlab中设计的控制算法自动生成代码,自动加载到实时目标机中运行,避免了繁琐的编程和Debug工作; 使用门槛低,会Matlab仿真即可完成实验测试工作,所有测试工作只需一人即可完成。 更灵活,更开放 硬件模块化设计,多种实验拓扑模块可选,同时,可根据需求定制各种不同的功率硬件,拓扑结构、功率级别、传感器的数量位置等均可以变化; 软件模块化设计,编程和监控全部采用基于模型的可视化设计方法,提供各类验证过的算法模型,可直接组合调用,大大缩短上手时间。 更可信,更可靠 采用高可靠性的功率模块和经过完善测试的接口模块,故障率低; 具备数字仿真和物理电路双重验证,设计更灵活,实验数据更具说服力。
南京研旭电气科技有限公司 2022-07-22
二维反铁材料MnPS3中磁振子输运的实验进展
近年来,磁振子电子学在信息计算和信息传输领域表现出了极具价值的应用潜力。磁振子电子学利用以磁振子为载体的电子自旋进动来实现信息处理,有望实现无热量产生、低耗散的信息传输,相比于传统意义上通过操纵电荷来实现信息的处理的微电子学具有无可比拟的巨大优势。磁振子电子学领域的进展很大程度上依赖于能够有效传输磁振子的新材料的发现,而获得长距离的磁振子输运始终是磁振子电子学研究的重中之重。与通常的三维磁性绝缘体(如Yttrium Iron Garnet)相比,二维尺度下的磁振子被理论预言有很多的新颖物理效应,例如自旋能斯特效应,拓扑磁振子,以及外尔磁振子等。 在最新的研究文章中,量子材料科学中心韩伟课题组在二维磁性体系中展开工作并取得了重要进展,观测到了二维反铁磁体系中磁振子的长距离输运。MnPS3晶体是一种层状反铁磁材料,利用机械剥离手段得到了二维的MnPS3薄片。MnPS3薄片上制备了用于测量磁振子输运的非局域器件,器件结构如图A所示。器件左侧Pt电极通过热方法来注入磁振子,右侧Pt电极探测在二维MnPS3中扩散传输的磁振子。在二维反铁磁MnPS3中,实验上观测到了几微米的磁振子扩散长度。并且从图B中可以看出,随着注入端和探测端距离的增加,探测到的非局域信号表现出e指数衰减的形式,跟一维漂移扩散模型的理论模型一致。在此基础上,他们还系统研究了MnPS3厚度对磁振子弛豫性质的影响。随着MnPS3厚度从40nm降低至8nm,磁振子弛豫长度由4μm减小到1μm(图C),这可能是由较薄的MnPS3中较强的表面杂质散射效应导致的。 该文章中的结果具有重要的学术价值:二维材料中的磁振子输运实现为二维磁性材料在磁振子电子学的应用与发展奠定了基础,也有望推动磁振子在量子尺度下的新颖量子物理性质研究。图:二维反铁磁体系中磁振子输运研究。(A)二维反铁磁MnPS3中的磁振子输运测量结构示意图。(B)自旋信号R_NL^*随电极间距的依赖关系,与理论预言的e指数衰减吻合。(C)磁振子弛豫长度随MnPS3厚度的依赖关系。 该工作于2019年2月7日在线发表于物理学术期刊Physical Review X上(Phys. Rev. X 9, 011026 (2019) )。 DOI: https://doi.org/10.1103/PhysRevX.9.011026。该工作由韩伟研究员设计和指导完成,北京大学量子材料科学中心2015级博士生邢文宇为文章第一作者,物理学院2015级本科生邱露颐为第二作者(今年9月份将去哈佛大学读博士),韩伟研究员为文章通讯作者。本工作的顺利完成得到了量子材料科学中心贾爽教授和谢心澄院士的合作帮助,以及国家重大科学研究计划、国家自然科学基金、中国科学院战略性先导科技专项的支持。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 68 69 70
  • ...
  • 81 82 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1