高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
年产20000吨壬基酚项目
壬基酚(壬基苯酚)是烷基酚中最重要的一个品种,常温下为无色(或淡黄色)粘稠透明液体,广泛用于表面活性剂NP系列、酚醛树脂、油墨树脂、塑料助剂、固化剂、矿物萃取剂等产品的制造。国内目前已知用量为6万吨/年,还有部分未知用户。 壬基酚主要生产原料:壬烯(三聚丙烯)、苯酚。 目前壬基酚主要生产工艺技术是:酸催化烷基化技术。分为:酸性白土法、离子交换树脂催化法。 酸性白土法:具有明显缺点、催化剂对设备的腐蚀性较大、设备维修更换成本高、原材料消耗高、污染物排放多,产
常州大学 2021-04-14
用于低浓度工业废水深度处理的新型咯态吸附剂
该吸附剂材料对水中有色物质和有机物的吸附容量可以达到 400mg/g 以上对总磷(TP)、总氮(TN)和锑(Sb)的吸附容量分别可达 10mg/g,15mg/g 和400μg/g,是目前市场上唯一一种可以同时高效去除 COD、TP、TN 和重金属锑的新型吸附材料。对水中有机物的吸附可以在 15 分钟内达到吸附平衡,远高于一般吸附剂材料,如目前常用的活性炭最少需要 2 小时以上才能达到吸附平衡。本项目利用低浓度的碱溶液(一般用 0.4%-1%)可以很方便在 20 分钟内将吸附于本吸附剂上的有机物质洗脱下来,实现被吸附物质的脱附过程。经碱液脱附后吸附剂,在酸溶液(pH=1))中浸泡 30 分钟,即可实现吸附剂的再生。
西安交通大学 2021-04-11
高浓度含盐难生物降解有机工业废水组合处理工艺
本发明的高浓度含盐难生物降解有机工业废水组合处理工艺,包括以下步骤:冷冻法预处理,冷冻法包括人工冷冻法和自然冷冻法,人工冷冻法是将所述废水置于冷冻场中冷冻,温度为0~-30℃,待废水冻结到固液比为1∶4~4∶1时,取出冻结的冰样,用净水冲洗后,融化,待后续光催化处理备用;自然冷冻法是在自然温度为2~-15℃条件下对废水进行冷冻处理。光催化法深度处理,将冰样融水进行光催化降解,控制光催化剂的投加量、光照时间、体系PH值参数来控制处理工艺运行。有益效果是均可对高浓度含盐有机废水如垃圾渗滤液、染料中间体废
天津城建大学 2021-01-12
纳米复合电极处理高含盐有机工业(农药,医药)废水新工艺
2006年,全国环境污染治理投资为2567.8亿元;07年太湖蓝藻爆发,江苏省“铁腕治污”并投资40多亿元治理太湖,截至07年底,太湖地区已累计关停化工生产企业1894家,08年继续关停600家小化工企业;可见废水处理意义重大。传统方法无法处理高含盐量有机废水,电化学法在常温、常压下能彻底降解有机污染物为CO2,无二次污染,是处理废水有效方法。本技术
南京工业大学 2021-01-12
高浓度难降解工业废水超临界水氧化治理成套技术与装备
超临界水氧化技术是用于高浓度难降解有毒有机废水深度处理的一种高效技术。所用的氧化剂可以是纯氧气、空气或过氧化氢等。其工艺流程如图所示。用高压泵将废水打入热交换器,废水从换热器内管束中通过,之后进入缓冲罐内,同时启动氧气压缩机,将氧气打入氧气缓冲罐内。废水与氧气在管道内混合之后进入反应器,在超临界条件下,废水中的碳氢化合物被氧化分解成无害的CO2、H2O;含氮化合物被分解成N2等无害气体;S、P等元素则生成无机盐。由于气体在超临界水中的溶解度极高,在反应器中成为均一相,从反应器顶部排出;无机盐等固体颗粒在超临界水中的溶解度极低,沉淀于反应器底部。超临界水与气体的混合流体通过热交换器冷却后进入气液分离器进行分离。与常规的水处理技术相比,本技术具有明显的优越性:(1)氧化效率高,处理彻底,水溶液中有机物的去除率可达99.99%以上;(2)反应在密闭容器中进行,密封条件极好,有利于有毒、有害物质的氧化处理;(3)不产生二次污染,处理后的水直接排放或完全回用,节约了资源和能源;(4)应用范围广,几乎对所有有机污染物均可进行氧分分解;(6)由于均相反应停留时间短,反应器结构简单,使用较小体积的反应器就可处理较大流量的有机污染物,有利于工业运行。应用本技术时,需消耗一定的能量以加热废水及驱动高压泵,但废水中的含能物质COD在超临界状态下发生氧化反应时会放出一定的热量,为了降低过程的运行成本,本技术的应用与否取决于废水的COD浓度。研究表明,如果废水的COD小于30000 mg/L时,应用本技术时的运行成本较高,将达到150元/吨废水左右;如果废水的COD浓度为30000~45000 mg/L时,考虑到热量回收,其运行成本接近零;如果废水的COD浓度高于50000 mg/L时,考虑热量回收的价值,此时的运行成本将为“负值”,即在盈利状态下运行。这也是本技术与传统废水处理技术的最大区别:传统技术要求废水的污染越低越好,而本技术恰好相反,废水越污越好。采用本技术存在的最大问题在于过程中产生的腐蚀与盐堵问题。针对这种情况,我们进行了新型反应器的开发并申报了国家发明专利。目前,本技术已申请国家发明专利5项,获授权一项。本技术适用于高浓度难降解有毒有机工业废水,可广泛应用于化工、石油炼制、纺织印染、造纸、医药等行业。
南京工业大学 2021-04-13
高浓度难降解工业废水超临界水氧化治理成套技术与装备
成果简介: 目前国内染料厂、农药厂、制药厂、造纸厂、化工厂、食品厂等,每年排放的高浓度难降解废水约30亿吨左右。对这类高浓度难降解工业废水的处理一直是困扰国内环保界的难题。超临界水的特殊性质使其在有机废水治理方面所具有的无可比拟的优点。
南京工业大学 2021-01-12
基于雌马酚激活 BKCa 通道的应用
雌马酚(equol)是大豆异黄酮的主要组分之一大豆黄素(daidzein)在结肠 微生物菌群作用下转化产生的具有稳定化学结构的最终代谢产物,比其母体具有 更高的生物活性。大豆黄素的生物学作用在一定程度上可能归因于其代谢产物雌 马酚。然而,人群中能代谢大豆黄素为雌马酚者约为 30%~50%。因此,人体能否 将大豆黄素代谢为雌马酚是决定大豆黄素能否更有效地发挥其药理作用的关键。 雌马酚具有抗氧化、抑制心肌钙超载、影响血管反应性、抗肿瘤、防治更年期综 合症和骨质疏松等作用。大电导钙激活的 K+通道(big conductance Ca2+-activated K+ channels,BKCa 通道)是收缩表型的血管平滑肌主要表达的 K+通道之一。由孔形成亚单位 α 和 调节亚单位 β1 共同组成跨膜蛋白复合体。β1 亚单位影响通道的 Ca2+/电压敏 感性、对药理学调节剂的反应以及通道向质膜的运输。血管 BKCa 通道激活引起 平滑肌细胞膜电位超极化,关闭电压依赖性 Ca2+通道,导致血管扩张,从而对 抗压力和血管收缩剂引起的血管收缩。更为重要的是,BKCa 通道呈现组织和功 能异质性。在脑动脉平滑肌细胞,BKCa 通道电流密度、对雌激素(作用于 β1 亚单位)的敏感性、β1 亚单位在 mRNA 和蛋白水平的表达以及 β1 与 α 亚单位 蛋白的比值均明显高于骨骼肌等外周小动脉平滑肌细胞。提示 β1 亚单位可能在 脑血管 BKCa 通道的调节中意义更为重要。本发明公开了基于雌马酚激活 BKCa 通道的应用,在应用大鼠局灶性脑缺血 再灌注模型、尾套法测量大鼠血压、激光多普勒血流仪观测脑实质和软脑膜血流 量及离体血管肌张力描记和膜片钳技术的基础上,对雌马酚的药用活性进行了检 测,结果表明雌马酚通过激活 BKCa 通道 β1 亚单位,扩张血管、增加脑血流量、 保护缺血再灌注脑组织,有益于缺血性脑卒中的防治,可用于相关药物的制备。 而我们目前的工作可作为临床前药效研究的主要部分。
西安交通大学 2021-04-11
间苯二酚定位催化加氢技术
间苯二酚主要用于橡胶粘合剂、合成树脂、防腐剂等主面。间苯二酚可通过加氢烷基化,不同的条件下催化烷基化可得到不同的化合物,通过定位加氢烷基化可以生成1,3-环己二酮(1,3-Cyclohexanedione; ?,?-Dioxocyclohexane),防止环己二醇的生成。1,3一环己二酮在医药、农药及化工合成中应用十分广泛,是一种非常重要的药物和农药合成中间体。可以制备抗心律不齐药物、抗血栓药物、抗肿瘤药物、镇痛药、杀病毒剂、5一HT拮抗药等多种医药。也可用于合成农药,如农用杀虫剂、驱避剂、各种除草剂如除草剂甲基磺草酮、杀菌及植物生长性调节活性化合物等的原料。由于环己二酮类化合物具有其良好的亲水亲油特点,弱酸性,便于植物吸收等原因,被广泛应用于具有生物活性物质的合成,而且这类化合物的环境相容性很好,在新农药的研发中有着良好发展前景。
华东理工大学 2021-04-13
工业废水或污泥中有毒重金属离子及农药残留的吸附与回收技术
本课题组研究开发的新型高聚物材料能特异性吸附多种工业废水中的重金属离子,如:铬、锌、铅、铜、镍等,并可通过改变流动相将吸附的重金属离子洗脱回收。实现了重金属离子污染废水的净化处理,并可以使重金属离子得到回收再利用。  特点:对农药残留的吸附回收,即使废水能达标排放,同时,吸附回收的农药又提高了企业产品的得率。  该类型吸附材料化学稳定性好,粒径均匀,吸附效率高。如:有毒重金属离子铬,工业废水经过该材料的吸附,富集的铬离子浓度提高了6倍,吸附材料可重复使用十次。  应用领域:使重金属污染废水得到纯化,并特异性吸附重金属离子,将其回收再利用;农药草甘磷的吸附回收等。该技术在国内处于领先。  投资规模:需根据废水或污泥的日处理量确定,主要设备包括:层析柱、在线检测器
南京工业大学 2021-04-13
含硫含碱废液过程减排新技术及装备
本项目属于循环经济与节能减排技术领域,涉及石油化工清洁生产工艺、化工过程机械和环境保护机械设备设计与制造技术。 我国石油脱硫与后续转化过程中每年消耗碱性原料2万吨以上,产生含硫含碱废液(水)约4500万吨,其组分复杂,涉及面广,有重大生态安全风险。 针对我国长期存在的含硫含碱废液的清洁防治问题,提出“减量、全回收、无污染”的“过程减排”方法。考虑到非均匀结构、颗粒碰撞和微粒偏析等问题,提出采用流动状态、微尺度介质、机械结构调控旋流场中微粒排列的新理论,建立了非均匀结构的稳定性条件、离心碰撞概率以及微粒偏析的调控方法,初步构建了微界面结构与微粒排列特征相结合的微相旋流捕获(MHC)原理的理论体系,实现了离子、分子及其聚集体等微量污染物的经济快速捕获利用,将旋流分离精度从微米级提高到纳米级。成功开发出重力沉降-旋流分离-旋流捕获-聚结-反应再生新工艺,整体技术属国内首创、处于同类技术国际先进水平,部分指标处于国际领先水平。
华东理工大学 2021-02-01
首页 上一页 1 2 3 4 5 6
  • ...
  • 94 95 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1