高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种降糖药达格列净的制备方法
本发明公开一种降糖药达格列净的制备方法,该方法以4?羟基苯甲醛为起始原料,经烷基化、羰基还原、氯代与对溴乙酰苯胺发生烷基化反应、重氮化、氯代得到达格列净中间体5?溴?2?氯?4'?乙氧基二苯甲烷,然后将中间体与2,3,4,6?四?O?三甲基硅基?D?葡萄糖酸内酯经缩合、醚化、脱甲氧基得到降糖药达格列净。本发明的工艺路线所用原料价格便宜易得,工艺容易实现工业化,所得最终产品纯度高;而且,本发明的工艺路线新颖,合成路线短,且反应中无危险复杂工艺,设备简单,操作简便,适合工业化生产。
东南大学 2021-04-11
抗血栓药物硫酸氢氯吡格雷绿色关键技术
与原工艺技术相比,本项目创新关键技术缩短生产周期1/3,单位产品能耗节约40%,物耗降低22%,“三废”减排30%。技术产品“泰嘉”,近三年累计销售收入71.30亿元,新增利润24.65亿元,新增税收8.42亿元,创收外汇236.99万美元;目前已进入全国1万余家医院,或者患者和专家的一致认可,以年均65%的国内销量市场占有率打破原研进口药在我国的垄断。
天津大学 2023-05-12
广州海格通信集团股份有限公司
广州海格通信集团股份有限公司(股票简称:海格通信,股票代码:002465)是国家创新型企业、全国电子信息百强企业之一的广州无线电集团的主要成员企业。海格通信是国家火炬计划重点高新技术企业、国家规划布局内重点软件企业,自2003年起连续入选中国软件业务收入前百家企业,拥有国家级企业技术中心、博士后科研工作站、广东省院士专家企业工作站,是全频段覆盖的无线通信与全产业链布局的北斗导航装备研制专家、电子信息系统解决方案提供商。 创立于2000年的海格通信,其历史可追溯到1956年,前身是诞生于计划经济时期的广州无线电厂(国营第七五〇厂)。2000年8月1日海格通信成立,2010年8月31日实现A股上市,公司是行业内用户覆盖最广、频段覆盖最宽、产品系列最全、最具竞争力的重点电子信息企业之一,行业领先的软件和信息服务供应商。公司主要业务覆盖“无线通信、北斗导航、航空航天、软件与信息服务”四大领域。 通过“产业+资本”双轮驱动,海格通信实现了新的跨越式发展,目前总资产超过100亿元,形成了“广州、北京、深圳、南京、成都、杭州、西安、武汉、长沙”等地域布局。全资子公司海格怡创是业界具有领先优势的通信信息技术服务商。控股子公司摩诘创新于2016年2月实现新三板挂牌(证券代码:836008),2017年,海格通信收购高新技术飞机零部件制造企业驰达飞机,拓展航空航天板块业务。 海格通信高度重视自主创新,坚持每年高比例投入技术研发,集结了一支高素质、稳定的骨干人才队伍,其中博士、硕士、学士占员工总数的50%,包括国务院津贴专家、全国“五一”劳动奖章获得者、广东省劳动模范、广州市劳动模范、广东省“五一”劳动奖章获得者、经理人及各类专业技术人员。 展望未来,围绕“以全球的视野,将海格通信建设成为无线通信、导航领域的最优秀现代企业”的战略目标,海格将坚持“高端高科技制造业、高端现代服务业”的战略定位,走“科技+文化”发展之路,朝着“我们的征途是银河天路”的伟大梦想迈进!
广州海格通信集团股份有限公司 2021-02-01
一种炔醇类曼尼希碱缓蚀剂及其合成方法与应用
本发明公开了一种炔醇类曼尼希碱缓蚀剂及其合成方法与应用,其中该缓蚀剂的合成方法包括以下步骤:将丙炔醇、醛糖与脂肪胺类化合物三者按(1~1.2):(1~1.05):(1~1.2)的物质的量的比混合得到混合物,接着,将该混合物在70℃~160℃下加热回流处理4h~8h,即得到炔醇类曼尼希碱缓蚀剂产物。本发明通过对该缓蚀剂关键合成方法的原料、配比、工艺步骤等进行改进,与现有技术相比,制备得到的缓蚀剂无毒、环境友好,缓蚀效果好、且可耐高温,尤其适用于作为盐酸缓蚀剂在酸洗碳钢中使用。
华中科技大学 2021-04-10
一种炔醇类曼尼希碱缓蚀剂及其合成方法与应用
本发明公开了一种炔醇类曼尼希碱缓蚀剂及其合成方法与应用, 其中该缓蚀剂的合成方法包括以下步骤:将丙炔醇、醛糖与脂肪胺类 化合物三者按(1~1.2):(1~1.05):(1~1.2)的物质的量的比混合得到 混合物,接着,将该混合物在 70℃~160℃下加热回流处理 4h~8h, 即得到炔醇类曼尼希碱缓蚀剂产物。本发明通过对该缓蚀剂关键合成 方法的原料、配比、工艺步骤等进行改进,与现有技术相比,制备得 到的缓蚀剂无毒、环
华中科技大学 2021-01-12
全三维电磁粒子模拟软件CHIPIC3D研制
全三维粒子模拟软件CHIPIC是国家*63计划*03主题支持项目“***粒子模拟软件研发”的主要研究内容,其研究目的是在坚实理论基础指导下,深入开展强波粒相互作用理论及HPM和HPMM相关理论研究,建立强流相对论互作用的理论体系,为高功率微波器件理论研究提供一款实用的粒子模拟软件。 因为粒子模拟软件在军事领域有重大应用价值,国外的一些先进粒子模拟软件对我国是禁运的(如美国的MAGIC),从而一些内部技术对我国也是封闭的。本软件是完全依靠国内的自身条件研制完成的,是具有完全知识产权的软件。由本软件运算的准确性(与国外软件比较验证)可以证明本成果使用的技术线路是完全可与国外软件媲美的。 该项目完成了三维电磁粒子模拟理论与算法、软件设计、软件测试等研究内容,突破了高效并行计算、大尺度结构建模、三维PIC/MCC混合算法等关键技术,设计了友好的图形化输入界面及多窗口输出界面,形成了功能完整的CHIPIC3D模拟软件。并最终应用于对高功率微波源、真空电子学太赫兹源、脉冲功率真空器件等进行三维粒子模拟。 该项目主要技术指标如下:1.CHIPIC3D全三维电磁粒子模拟软件在直角及圆柱坐标系下实现了三维FDTD及粒子算法,能对各种对称、非对称结构的高功率微波源及太赫兹波源器件进行三维粒子模拟,模拟结果与实验吻合。2.采用基于消息交换与共享内存相结合的并行计算方法,使加速比达到30以上;3.采用分段建模并行计算的方法,能对30米以上大尺度精细结构进行三维粒子建模及模拟;4.将蒙特卡洛及Vaughan模型算法应用于三维粒子模拟软件,使其能模拟介质表面二次电子倍增、气体放电及介质表面击穿等复杂物理问题;5.采取面向对象的方法,能提供友好的图形化的输入界面及多窗口输出界面。 目前该软件已在中国工程物理研究院流体物理研究所、中国工程物理研究院应用电子学研究所、北京应用物理与计算数学研究所、国营第七七二厂、四川大学电子信息学院、西南交通大学等单位应用。从军事应用角度来看,该软件将缩短我国高功率微波源的研究周期,从而加快我国军队相关武器装备的研究进程;从经济效益角度来看,该软件避免了大量的重复加工及重复试验,节约了大量的人力物力,从而为用户单位带来巨大的经济效益。
电子科技大学 2021-04-10
一种可控药物释放的纳米药物载体粒子及制备方法
本发明公开了一种可控药物释放的纳米药物载体粒子,所述粒子具有核壳型结构,最内层为表面介孔并且中空结构的金纳米笼(1),所述金纳米笼(1)表面修饰一层带有正电的聚合物PAH层(2),所述聚合物PAH层(2)的外表面包裹层具有pH敏感型的脂质体层(3)。当在pH、光照的外界激励触发下,门控由“关”转为“开”的状态,从而释放出药物分子。这种载体粒子能有效地提高癌症化疗的效率。
东南大学 2021-04-11
全三维电磁粒子模拟软件CHIPIC3D研制
该项目主要技术指标如下:1.CHIPIC3D全三维电磁粒子模拟软件在直角及圆柱坐标系下实现了三维FDTD及粒子算法,能对各种对称、非对称结构的高功率微波源及太赫兹波源器件进行三维粒子模拟,模拟结果与实验吻合。2.采用基于消息交换与共享内存相结合的并行计算方法,使加速比达到30以上;3.采用分段建模并行计算的方法,能对30米以上大尺度精细结构进行三维粒子建模及模拟;4.将蒙特卡洛及Vaughan模型算法应用于三维粒子模拟软件,使其能模拟介质表面二次电子倍增、气体放电及介质表面击穿等复杂物理问题;5.采取面向对象的方法,能提供友好的图形化的输入界面及多窗口输出界面。
电子科技大学 2021-04-10
近红外荧光磁性微乳纳米粒子及其制备方法和应用
本发明公开了一种近红外荧光磁性微乳纳米粒子及其制备方法和在肿瘤治疗中的应 用,本发明将磁性纳米粒子与近红外荧光量子点或与近红外荧光有机染料分子一起包埋 到油包水的微乳中,微乳中还可包埋抗癌药物,通过磁性纳米粒子的磁导向作用,将微 乳包埋的近红外荧光物质靶向到肿瘤部位或固定在肿瘤部位,在近红外光的激发下,通 过近红外荧光物质发射的近红外荧光所产生的热效应来杀伤肿瘤细胞,利用近红外荧光 量子点还可以通过光激发产生的具有高活性的²OH和²O↓自由基与热效应一起来 协同摧毁肿瘤细胞。热效应和抗癌药物的毒杀作用以及量子点的光催化活性来协同摧毁 肿瘤细胞。本发明对于临床上恶性肿瘤的治疗具有重要的意义,应用前景广阔。
同济大学 2021-04-13
金属和合金纳米粒子组装薄膜材料的气相制备技术
纳米粒子由于具有非常小的颗粒尺寸和大的比表面积,通常显示出许多不同于常规块体材料的电、磁、光和化学特性,在现代工业、国防和高技术发展中充当着重要的角色。随着科学技术的迅速发展,对材料性能的要求也越来越高,因此寻找一种可替代液相法的真空气相法来获得表面清洁纳米粒子的制备技术是开发具有优异性能新型纳米结构材料的迫切要求。特别是纳米粒子组装复合薄膜材料由于具有传统复合材料和现代纳米材料两者的优越性,成为一个重要的前沿研究热点,它有望将“传统功能材料”通过“纳米复合化”达到进一步提高和拓展材料性能的目的。
厦门大学 2021-01-12
首页 上一页 1 2
  • ...
  • 13 14 15
  • ...
  • 22 23 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1