高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种超宽波段图谱关联探测装置与探测方法
本发明公开了一种超宽波段图谱关联探测装置,包括扫描转镜、卡氏反射镜组、分光镜、反射镜、宽光谱透镜组、可见及近红外透镜组、长波成像透镜组、电荷耦合元件成像单元、焦平面阵列成像单元、傅里叶测谱单元和光栅测谱单元。本发明利用长波红外成像及可见近红外成像初步识别目标并引导测谱,利用测谱完成目标精确识别,解决现有探测装置探测波段不全,光路布局受限,设备体积大,探测动目标和动态变化对象能力差的难题。本发明体积较小、集成度高、使
华中科技大学 2021-04-14
探测窗口可调的双模式有机光电探测器
课题组提出一种近红外和可见光的双模式/双波段可调的有机光电探测器,其器件结构主要包括可见光吸收层、光学间隔层、近红外吸收层。研究发现,基于此结构的有机薄膜光电探测器具有近红外和可见光两种不同波段光响应的工作模式。在近红外光照射下,光电流从近红外吸收层产生,其工作原理是在负偏压下,有机薄膜层和阴极电极的界面发生陷阱导致的近红外光响应的载流子注入。而在可见光的照射下,光电流则从可见光吸收层产生,原理是在正偏压下,可见光响应的载流子注入发生在阳极电极和有
南方科技大学 2021-04-14
平面凸轮和空间凸轮设计技术
由于凸轮机构结构简单紧凑,使用可靠,可以实现各种复杂的运动要求,广泛应用于各种自动机械、  仪器和操纵控制装置。随着社会经济的发展,要求机器的运转速度越来越高,凸轮廓面对机器运动的振  动和噪声影响很大。北工大先后为威海滨田印刷机厂和威海印刷机厂设计了递纸机构中的共轭凸轮,图 1是为设计并加工的共轭凸轮,此共轭凸轮应用于图 2 所示的滨田 492 印刷机,使该印刷机转速由 9000rpm 提高到    15000rpm。基于国家重大科技专项“凸轮式换刀机构加工工艺及产业化”,研究了加工中心自动换刀装置 (ATC) 中的核心驱动件——弧面凸轮 ( 图 3) 的廓面设计,设计的弧面凸轮应用于北一大隈生产车间。
北京工业大学 2021-04-13
一种多平面耐压结构
本发明属于抗压结构领域,更具体地,涉及一种多平面耐压结构,由多平面柱体和设置在其两端的多平面半球壳共同组合而成;或直接由两个相同的多平面半球壳组合而成;所述多平面半球壳整体呈球壳形状,它的表面由多个第二基本平面板块彼此拼接而成,彼此相邻的第二基本平面板块之间均存在一定的平面夹角,并且在多平面半球壳与多平面柱体/多平面半球壳的连接处,各个基本平面板块之间不以平滑的曲线过渡。本发明的多平面耐压结构在保证抗压性能的同时,降低了柱体与球壳之间的过渡段对整个多平面柱壳结构的力学特性影响,具有抗压能力强、生产工艺简单,制作周期短、易于大规模生产等优点。
华中科技大学 2021-04-14
34001平面政区地球仪
宁波华茂文教股份有限公司 2021-08-23
25010平面镜成像实验器
宁波华茂文教股份有限公司 2021-08-23
人体器官芯片
成果介绍人体器官芯片的成功研发将有力推动我国生物医疗用芯片制造技术的发展,建立全新的生命科学实验方法;能够有效减少新药研发等对动物和临床实验的依赖,加速新药研发的流程并减少研发投入技术创新点及参数微缩人工器官,以实现对人体器官功能的模拟。器官芯片高内涵装置的设计和制造,开发了标准芯片系统及器官特异性生物材料市场前景疾病模型,药物评估,个性化医疗。
东南大学 2021-04-13
智能开关芯片
GaN系列材料具有低的热产生率和高击穿电场,是制作大功率电子器件的重要材料。利用GaN材料制造的功率管拥有承受大电流、耐高压、抗辐射,耐高温而且开关速度快的特点,非常适用于高功率微波器件。随着5G毫米波通信、工业4.0和新一代雷达的发展,这种功率微波器件将会得到更广泛的应用。但是,对于这种半导体器件的负载开关驱动提出了非常高的要求。要求负载开关驱动封装尺寸小,便于大阵列集成。并且对可靠行的要求也极高。智能功率集成电路(Smart Power Inte
南京大学 2021-04-14
高性能专用芯片
交流伺服系统是跨行业、量大面广、节能效果显著的节能机电产品,几乎渗透到所有用机电领域,是工业、农业和国防建设及人民生活、正常生产和安全工作的重要保证。
南京大学 2021-04-14
智能视觉感知芯片
1.痛点问题 元宇宙时代三维成像基础设备和数字终端成像及显示设备都将需要革命性的提升。同时,工业智能和基础科学的快速发展也对感知和成像极限提出了更高的需求。 现有的成像技术,即摄像头模组和3D成像模组,存在诸多技术和经济的缺陷,如抗扰动性能差、占据空间大、功耗大、成本高等,特别是随着传感芯片像素数的增加,传统光学成像系统需要多级较大的昂贵镜片才能实现高分辨率的成像性能,很难应用于手机等小型化设备上,不足以适应科技的高速发展。 “智能视觉感知芯片”将达成光学感知的技术革新并有效解决现存问题。通过数字自适应光学技术矫正系统像差和环境像差、实现高速重构目标景物高精度三维信息,进而实现使用普通的低成本小型化单镜片即可实现高分辨率成像,同时该芯片能够适用于不同的光学系统,包括大口径天文成像,实现高分辨率远距离成像,克服大气湍流干扰。 2.解决方案 团队提出“智能视觉感知芯片”概念,该种芯片拥有多项优势:全球领先的4D感知技术,自适应抗干扰;创新的透镜设计方案结合自主知识产权算法,可通过单摄像头模组实现原多摄像头模组功能,大幅降低现有成本、体积和功耗,显著提升分辨率。通过对目标场景进行多维度的密集采样,将多维度的耦合信息解耦,重构傅里叶面的非期望相位分布,实现高速大范围的自适应光学矫正,显著降低光学成像系统尺寸与成本,提升成像效果,同时具备三维深度感知能力。 合作需求 寻求消费电子等领域有相关技术开发、市场推广经验,能推广本技术落地的高科技企业,可以进行深度合作。
清华大学 2022-05-19
首页 上一页 1 2
  • ...
  • 8 9 10
  • ...
  • 574 575 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1