高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
珠海一维弦机器人有限公司
一维弦科技于2015年成立,主要针对轻服务业研发自动化智能机器人和机器人操作系统及相关人才培养。 一维弦科技是由数十位曾工作于国际顶尖机器人实验室,具有前沿机器人科研能力和丰富的开发经验的工程师组成,团队成员均毕业于国内外一流高校。公司专家团队包括卡内基梅隆大学、伍斯特理工学院、清华大学、上海交通大学、北京理工大学等校知名教授。 公司主要业务方向包括高校专业建设、在线课程、线下培训、商业服务市场自动化解决方案。
珠海一维弦机器人有限公司 2021-02-01
基于减震耗能的高强全装配式钢结构住宅体系
装配式钢结构住宅体系经过国内外科研单位和企业多年的研究,目前已取得了一定的成果和应用,但还存在以下问题: ①现有装配式钢结构住宅的核心技术偏重于主体结构,没有封闭成一套完整的建筑产品,因此各组成部分(建筑设计方案、结构设计方案、抗侧力体系、围护结构、三板方案)的衔接不足,存在诸多系统性问题。 ②缺乏与现行规范、规程有良好“接口”的设计方法和配套标准图集,以及相应的统一的可执行行业标准、构造方案和施工方案。 ③缺乏针对不同的地域、环境、使用功能的多套针对性的装配式钢结构建筑产品。针对上述问题,本研发团队提出一种基于减震耗能的高强全装配式钢结构住宅体系,提出一套完整的针对不同环境、不同使用工况,拥有主体结构(实腹式异形柱+钢格构柱组合体系(8-11 层)、 异形钢格构框架+钢格构剪力墙体系(15-18 层)、异形钢格构框架 +抗侧力体系 SSF-LRS(19-26 层))、抗侧力体系(四个系列 SSF-L RS)、楼板体系(皮卡汀尼楼板体系(皮卡汀尼梁+皮卡汀尼板+关 键连接节点))、墙板体系(带限位功能的 CF 自保温墙板),及相应的建筑、结构设计方案、成套设计方法、技术标准及图集、构造方案、施工方案及配套设备,进而形成一套封闭的拥有自主知识产权的钢结构装配式建筑产品。 该体系的创新型、先进性、独占性: (1)基于减震耗能的高强全装配式钢结构住宅体系是一套完整的全装配式钢结构建筑产品。该建筑体系包含主体结构、抗侧力体系(四个系列 SSF-LRS)、楼板体系、墙板体系。主体结构根据不同使用工况有四种组合方案:实腹式异形柱+钢格构柱组合体系 (8-11 层)、异形钢格构框架+钢格构剪力墙体系(15-18 层)、异 形钢格构框架+抗侧力体系 SSF-LRS(19-26 层)。抗侧力体系为四种适用于不同需求的全栓接装配式钢框架-抗侧力体系(SSF-LRS)。皮卡汀尼楼板体系包括 2 种形式的皮卡汀尼梁(翼缘型梁、箱型扁 梁)、4 种皮卡汀尼板(PTB60-310-930、PTB80-330-660、PTB110- 366-732、PTB130-390-750)、梁板连接节点、主次梁连接节点等。墙板体系为一种新型带限位功能的 CF 自保温墙板。整个建筑体系均为自主研发、自行设计,拥有完整的知识产权及独特、领先的技术优势。 (2)国内外已经开展一定数量有关钢板剪力墙、粘弹性阻尼器等的研究,但将二者结合起来研究还未见报道。由于问题的复杂性,相关结构类型的抗震性能研究只有少量的小比例试验。本研究对大比例的 SSF-LRS 体系进行循环加载试验,考虑不同的钢板截面形状、阻尼器布置数量、节点转动刚度对结构的动力特性和抗震性能的影响,属创新性的工作。本项目同时研发了一系列新型减震耗能及全栓接构件,为结构体系形成坚实的围护结构部分。 (3)提出一套基于减震耗能的高强全装配式钢结构住宅体系的设计方法、建筑设计方案、结构设计方案、构造方案、施工工艺及配套设备、产品模型、技术标准等,推动此研发成果在市场上的推广应用。
济南大学 2021-05-11
了两种新型的预制混凝土框架结构装配体系
鉴于装配式混凝土结构工程应用中传统连接方式存在诸多问题现状,如对预制构件生产的精度、安装施工的组织和管理要求较高,缺乏有效的质量检测方法,存在较大的结构安全隐患。教授团队与上海建工二建集团工程研究院共建产学研创新合作平台,对装配式混凝土结构的关键连接技术,开展了系统的试验研究,目前已完成了超高性能混凝土(UHPC)与钢筋黏结性能试验、UHPC 材料连接的预制装配柱抗震性能试验、UHPC 材料连接的预制装配梁受弯性能试验和UHPC 材料连接的装配式框架边节点抗震性能试验等研究工作,研究表明这一新型连接
上海理工大学 2021-01-12
后 E 级时代的新型高能效处理器体系结构
研发阶段/n拟突破传统的控制流模式,开展新型高能效处理器体系结构的研究,主要研究 内容包括:(1)新型的并行计算模型,拟研究支持控数协同的新型并行计算模型, 为高能效处理器体系结构提供理论指导;(2)新型的高能效处理器体系结构,拟 研究新型计算模型指导下的控数协同处理器体系结构,兼顾通用性和高能效;(3) 基于新器件的高能效体系结构,拟研究基于超导器件的高能效体系结构设计,以进 一步提升处理器能效比;(4)高能效体系结构和应用的协同优化,拟研究后E级计 算典型应用和控数协同体系结构的协同优化,验证新
中国科学院大学 2021-01-12
复杂高层建筑高效抗震结构体系设计与建造关键技术
北京工业大学 2021-04-14
小转角双层石墨烯体系的结构和新奇量子物态研究进展
层间转角在层状堆垛的二维材料体系中提供了一个全新的自由度来调控其结构与性质。近几年,相关方面的研究引起了广泛的关注。早在2012年,何林课题组就开始关注转角对双层石墨烯结构和电学性质的影响,测量了不同转角双层石墨烯的两个范霍夫峰的峰间距能量与转角大小的关系[1],并预言该体系中的准粒子具有可调控的手征性[2],研究了应变结构在该体系产生的赝磁场和赝朗道能级[3]。2015年,何林团队发现双层转角石墨烯体系费米速度随角度减小而迅速下降,证明在转角为1.1度(第一魔转角)附近时费米速度降为零[4],并于2017年,在转角接近魔转角的双层石墨烯体系观察到强电子-电子相互作用[5]。2018年初MIT的Pablo课题组在魔角双层石墨烯观察到电子-电子相互作用导致的关联绝缘体态和超导态,魔角双层石墨烯物性研究迅速成为过去两年凝聚态物理研究的最大热点。 近期,何林课题组发展了一套方法,能够可控地制备利于扫描隧道显微镜系统(STM)研究的双层转角石墨烯,并利用STM研究了小角度双层石墨烯的性质,深入探索该体系由于电子-电子相互作用导致的平带简并度解除和新奇强关联量子物态的关联。例如,何林课题组与合作者发现当小转角体系的平带被部分填充时,电子-电子相互作用会解除平带的谷赝自旋简并度,在体系中产生很大的轨道磁矩(每个莫尔约10μ_B),由于轨道磁矩和磁场的耦合,谷极化态的劈裂能量会随着外加磁场线性增大[6]。同样的结果也在应变引起的平带中观察到了,当双层石墨烯的转角接近魔角时,体系中微小的应变结构可以使两个范霍夫峰之间出现一个新的零能量平带(赝朗道能级),何林课题组与合作者发现电子-电子相互作用会解除赝朗道能级的谷赝自旋简并度,产生轨道磁性态[7]。这些结果表明小转角石墨烯体系是研究二维轨道磁性态和量子反常霍尔效应的理想平台。在角度大于魔角的小转角双层石墨烯中,何林课题组与合作者证明电子-电子相互作用依然会起重要作用,并有可能产生完全不同于魔角双层石墨烯的新奇强关联量子物态。例如在1.49度的样品中,他们证明电子-电子相互作用解除了体系平带中的自旋和谷赝自旋的简并度,产生了一种全新的自旋和谷极化的金属态[8],这一结果进一步拓宽了转角体系新奇强关联量子物态的研究范围。 除了电学性质受层间转角的调制,在双层转角石墨烯体系,由于层间堆垛能与层内晶格畸变引起的应变能的竞争,其原子结构也会随着角度发生改变。最近,何林课题组系统研究了双层转角石墨烯结构随着角度的演化,发现当转角大于魔角时,体系可以看作两个独立的刚性石墨烯层发生扭转,层内晶格畸变几乎可以忽略(定义为非重构结构);当转角小于魔角时,由于莫尔条纹周期较大,层间堆垛能占主导,从而引起晶格畸变产生堆垛的畴界(domain wall)网格(定义为重构结构)。这种畴界的两边都是Bernal堆垛的双层石墨烯(分别为AB堆垛和BA堆垛),能传输谷极化的电流(图一)。我们利用STM证明非重构和重构的两种结构在魔角附近都能稳定存在。进一步,我们发现利用STM针尖脉冲可对魔角双层石墨烯的非重构和重构结构进行切换,从而开关其二维导电拓扑网格。同时,我们发现在强关联效应中起到重要作用的魔角双层石墨烯平带的带宽也能在这一过程中被调控[9]。相关成果近日刊发在物理学期刊《Physical Review Letters》上。何林教授课题组博士生刘亦文为第一作者,美国洛斯阿拉莫斯国家实验室的苏赢博士为文章的共同第一作者,何林教授为通讯作者。
北京师范大学 2021-02-01
小转角双层石墨烯体系的结构和新奇量子物态研究进展
层间转角在层状堆垛的二维材料体系中提供了一个全新的自由度来调控其结构与性质。近几年,相关方面的研究引起了广泛的关注。早在2012年,何林课题组就开始关注转角对双层石墨烯结构和电学性质的影响,测量了不同转角双层石墨烯的两个范霍夫峰的峰间距能量与转角大小的关系[1],并预言该体系中的准粒子具有可调控的手征性[2],研究了应变结构在该体系产生的赝磁场和赝朗道能级[3]。2015年,何林团队发现双层转角石墨烯体系费米速度随角度减小而迅速下降,证明在转角为1.1度(第一魔转角)附近时费米速度降为零[4],并于2017年,在转角接近魔转角的双层石墨烯体系观察到强电子-电子相互作用[5]。2018年初MIT的Pablo课题组在魔角双层石墨烯观察到电子-电子相互作用导致的关联绝缘体态和超导态,魔角双层石墨烯物性研究迅速成为过去两年凝聚态物理研究的最大热点。 近期,何林课题组发展了一套方法,能够可控地制备利于扫描隧道显微镜系统(STM)研究的双层转角石墨烯,并利用STM研究了小角度双层石墨烯的性质,深入探索该体系由于电子-电子相互作用导致的平带简并度解除和新奇强关联量子物态的关联。例如,何林课题组与合作者发现当小转角体系的平带被部分填充时,电子-电子相互作用会解除平带的谷赝自旋简并度,在体系中产生很大的轨道磁矩(每个莫尔约10μ_B),由于轨道磁矩和磁场的耦合,谷极化态的劈裂能量会随着外加磁场线性增大[6]。同样的结果也在应变引起的平带中观察到了,当双层石墨烯的转角接近魔角时,体系中微小的应变结构可以使两个范霍夫峰之间出现一个新的零能量平带(赝朗道能级),何林课题组与合作者发现电子-电子相互作用会解除赝朗道能级的谷赝自旋简并度,产生轨道磁性态[7]。这些结果表明小转角石墨烯体系是研究二维轨道磁性态和量子反常霍尔效应的理想平台。在角度大于魔角的小转角双层石墨烯中,何林课题组与合作者证明电子-电子相互作用依然会起重要作用,并有可能产生完全不同于魔角双层石墨烯的新奇强关联量子物态。例如在1.49度的样品中,他们证明电子-电子相互作用解除了体系平带中的自旋和谷赝自旋的简并度,产生了一种全新的自旋和谷极化的金属态[8],这一结果进一步拓宽了转角体系新奇强关联量子物态的研究范围。 除了电学性质受层间转角的调制,在双层转角石墨烯体系,由于层间堆垛能与层内晶格畸变引起的应变能的竞争,其原子结构也会随着角度发生改变。最近,何林课题组系统研究了双层转角石墨烯结构随着角度的演化,发现当转角大于魔角时,体系可以看作两个独立的刚性石墨烯层发生扭转,层内晶格畸变几乎可以忽略(定义为非重构结构);当转角小于魔角时,由于莫尔条纹周期较大,层间堆垛能占主导,从而引起晶格畸变产生堆垛的畴界(domain wall)网格(定义为重构结构)。这种畴界的两边都是Bernal堆垛的双层石墨烯(分别为AB堆垛和BA堆垛),能传输谷极化的电流(图一)。我们利用STM证明非重构和重构的两种结构在魔角附近都能稳定存在。进一步,我们发现利用STM针尖脉冲可对魔角双层石墨烯的非重构和重构结构进行切换,从而开关其二维导电拓扑网格。同时,我们发现在强关联效应中起到重要作用的魔角双层石墨烯平带的带宽也能在这一过程中被调控[9]。相关成果近日刊发在物理学期刊《Physical Review Letters》上。何林教授课题组博士生刘亦文为第一作者,美国洛斯阿拉莫斯国家实验室的苏赢博士为文章的共同第一作者,何林教授为通讯作者。
北京师范大学 2021-04-10
装配式结构功能一体化围护体系关键材料开发
随着现代设计理念的进步,建筑外观逐渐呈现个性化趋势,越来越多的出现在城市公共建筑中。研究出的产品集科技、绿色、艺术于一身,融结构与功能于一体,具有丰富的文化元素、非线性艺术造型元素,并且产品具有表面自清洁、降解有害气体、隔热保温、隔音抗噪等功能,推动了传统建筑产业与环保产业的有机融合。本成果打破了国际相关专利技术壁垒,在大型装配式UHPDC所需的关键材料、3D打印专用成套设备和装配式装饰围护结构与功能一体化应用技术方面,形成了完整的具有自主知识产权的专利和技术标准体系,填补了我国大型装配式多功能化建
南京工业大学 2021-01-12
【新华网】新华吉林快报丨15张高清大图速览第63届高等教育博览会盛况
23日,第63届高等教育博览会在吉林省长春市开幕,建设教育强国·高等教育改革发展论坛同日举行,吸引千余所高校及科研机构、800余家科技企业参加,聚焦以融合创新赋能教育强国建设。
新华网 2025-05-23
网络结构化多主体系统中任务执行的资源缓存方法
本专利提出一种网络结构化多主体系统中任务执行的资源缓存方法,每当主体执行任务调用所需资源时,还需对调用的资源进行缓存:如果调用的是原始资源,那么就产生一个该资源的副本,该副本向调用主体移动一步;如果调用的是资源副本,那么直接将该副本向这个主体移动一步。因此,当以后该主体执行任务需调用该资源时,就会比调用原始资源更节省时间,故而提高任务执行的效率.另外,为了防止系统中存在过量的资源副本对网络造成拥塞,本发明还提出了资源缓存的消逝机制:设置一个时间段,网络中的资源副本每隔一个时间段就会向其原始位置回退一步;如果一个资源副本很长时间没有被调用,那么它就会逐步再回退到其原始位置,从而资源副本消失。
东南大学 2021-04-10
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 117 118 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1