高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种用于微纳米颗粒表面修饰的装置和方法
本发明公开了一种用于微纳米颗粒表面修饰的装置,包括:反 应腔,其内部形成的空腔用于作为前驱体与微纳米颗粒的反应空间; 多个前驱体供应装置,其分别通过管道与所述反应腔相通以提供不同的前驱体;载气输送系统,前驱体通过该载气输送系统输出的载气输 送到反应腔中;以及粉体颗粒装载装置,用于承载待修饰的微纳米颗 粒;通过多个前驱体供应装置分别向反应腔交替地输送前驱体,并进 入旋转的粉体颗粒装载装置中以与微纳米颗粒表面接触进行原子层沉 积反应,从而在微纳米颗粒的表面形成包覆薄膜,实现表面修饰。本 发明还公开了利用
华中科技大学 2021-01-12
针对光学微腔调控金属纳米颗粒电磁环境的实验
金属纳米结构中的自由电子振荡与外部光场发生耦合,形成局域表面等离激元共振,可以将光场压缩到纳米尺度。利用高品质因子光学微腔来调控金属颗粒的电磁场环境。相比于真空环境,光学微腔调制的电磁环境与等离激元共振模式有更强的耦合,增强了等离激元的辐射输出。高效的输出渠道使得能量不再集中于吸收区域,从而减小其热损耗。相比于真空中的金属颗粒,微腔调制的金属颗粒可以将单原子的辐射效率提升40倍,输出功率提升50倍。
北京大学 2021-04-11
一种用于微纳米颗粒表面修饰的装置和方法
本发明公开了一种用于微纳米颗粒表面修饰的装置,包括:反应腔,其内部形成的空腔用于作为前驱体与微纳米颗粒的反应空间;多个前驱体供应装置,其分别通过管道与所述反应腔相通以提供不同的前驱体;载气输送系统,前驱体通过该载气输送系统输出的载气输送到反应腔中;以及粉体颗粒装载装置,用于承载待修饰的微纳米颗粒;通过多个前驱体供应装置分别向反应腔交替地输送前驱体,并进入旋转的粉体颗粒装载装置中以与微纳米颗粒表面接触进行原子层沉积反应,从而在微纳米颗粒的表面形成包覆薄膜,实现表面修饰。本发明还公开了利用上述装置进行微
华中科技大学 2021-04-14
智慧微格教学平台
北京大智汇领教育科技有限公司 2025-01-09
一种多功能单分散纳米复合成膜液的制备方法
本发明公开了一种多功能单分散纳米复合成膜液的制备方法,属纳米材料应用技术领域。其特征是 利用纳米TiO2、ZnO、SiO2功能互补性能把纳米TiO2、ZnO、SiO2粉体按比例分散在水中,并调节体系的 pH值,加入助成膜剂和成膜剂,使之成膜。采用长时间的超声振荡使之呈单分散稳定状态。用该方法制得 的纳米复合成膜液颗粒呈单分散状态,稳定性优良,可直接作为分散液使用,也可在多种基材上涂覆成膜 且涂膜具有降解有机物、灭菌、耐老化、耐水洗和粘附牢固等优异性能,可广泛应用于涂料、光催化、环 境净化等领域,使纳米材料的优异性能得以充分发挥。本方法具有工艺过程简单,易控制,适用于规模化 制造等特点;产品应用广泛。
四川大学 2021-04-11
金属熔滴打印快速制造技术及设备
内容介绍: 金属熔滴打印是微小金属零件快速成型的新技术。打印材料包括铅、 锡、铜、银、铝等常用金属及其合金,通过金属熔滴与金属粉末的联合 喷射沉积,可成形具有特殊性能的微小金属间化合物零构件。该技术具 有装置结构紧凑、熔炼温度高、颗粒均匀度高等优点,该设备可用于高 密度BGA焊点、微小电子线路等微小封装件的快速打印,也可用于微小薄 壁器件、异形承力件等复杂零/构件的快速成型等领域,为微小复杂器件 的快速
西北工业大学 2021-04-14
海洋高分子微球的微流控制备方法及其应用
中国发明专利ZL202210046308.4:采用无乳化剂、无有机交联剂的微流控法制备规整球形的海洋高分子微球,微球实心或空心、粒径(200纳米-50微米)、微观结构可控可调,可作为吸附材料、药物香精等载体材料的应用。
厦门大学 2025-02-07
板书液
产品详细介绍
太原奥洁科教用品有限公司 2021-08-23
海带液
荣成市精宜海洋科技股份有限公司 2021-08-30
近红外荧光磁性微乳纳米粒子及其制备方法和应用
本发明公开了一种近红外荧光磁性微乳纳米粒子及其制备方法和在肿瘤治疗中的应 用,本发明将磁性纳米粒子与近红外荧光量子点或与近红外荧光有机染料分子一起包埋 到油包水的微乳中,微乳中还可包埋抗癌药物,通过磁性纳米粒子的磁导向作用,将微 乳包埋的近红外荧光物质靶向到肿瘤部位或固定在肿瘤部位,在近红外光的激发下,通 过近红外荧光物质发射的近红外荧光所产生的热效应来杀伤肿瘤细胞,利用近红外荧光 量子点还可以通过光激发产生的具有高活性的²OH和²O↓自由基与热效应一起来 协同摧毁肿瘤细胞。热效应和抗癌药物的毒杀作用以及量子点的光催化活性来协同摧毁 肿瘤细胞。本发明对于临床上恶性肿瘤的治疗具有重要的意义,应用前景广阔。
同济大学 2021-04-13
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 180 181 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1