高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
抗感染药物
提供药物组合物及其在制备抗感染药物中的应用。所述药物组合 物不仅具有显著的体内抗感染作用,且在半数致死时间之前,与其拆 方相比,药物组合物能维持更显著的药效。因此本发明所提供的药物 组合物可在制备抗感染的药物中应用。
兰州大学 2021-04-14
手性氨基酸的微生物高效生产方法
手性氨基酸作为最重要的原料和中间体,市场规模也越来越大。本项目研发的手性氨基酸包含 L-2-氨基丁酸、D-苏氨酸、L-天冬酰胺、L-叔亮氨酸、L-色氨酸等。2-氨基丁酸是一种非天然的氨基酸,是一种重要的化工原料,被用作为多种手性药物合成中的重要中间体,包括抗结核药物乙胺丁醇、布瓦西坦和抗癫痫 药物左乙拉西坦。D-苏氨酸是天然氨基酸 L-苏氨酸的光学异构体,是一种非天然氨基酸。主要应用于手性药物、手性添加剂和手性助剂等领域,在制药行业作为手性合成的手性源,主要用于生产新型光谱抗生素、D-苏氨醇和多肽合成过程的苏氨酸保护剂。L-天冬酰胺是常见的 20 种氨基酸之一,在食品、医药、化工合成、微生物培养等领域广泛应用。L-天冬酰胺可以作为添加剂用于清凉饮料,同时在肿瘤治疗及蛋白质糖基化中扮演重要角色。L-天冬酰胺常用于氨基酸输液,以及具有降压、平喘、抗消化性溃疡、胃功能障碍等功能,并可用于治疗心肌梗死、心肌代谢障碍、心力衰竭、心脏传导阻滞、疲劳症等。此外,L-天冬酰胺也是微生物培养和动物细胞培养重要的添加剂。L-叔亮氨酸是一种非蛋白原的手性氨基酸, 由于叔丁基的空间位阻大, 叔亮氨酸的衍生物可在不对称合成中作为诱导不对称的模板。随着不对称合成的发展, 叔亮氨酸的应用也非常广泛。又由于占空间大的叔丁基链及其疏水性, 它在多肽的合成中能够很好地控制分子构象, 增加多肽的疏水性和受酶降解的稳定性, 因此在药物和生物应用中正迅速地发展, 用于抗癌、抗艾滋病等药物和生物抑制剂及肽等。
江南大学 2021-04-11
仪研(上海)YJ-0633A药物黏度测定仪
YJ-0633A药物黏度测定仪 本仪器YJ-0633A药物黏度测定仪的制造符合中国药典2020年版0633黏度测定法所规定的技术要求,可以通用品氏和乌氏粘度计。本仪器专为粘度测试设计,由水槽和控制器两部分组成。粘度恒温槽提供一个稳定的温场和测试平台,此外仪器也可作为高精度浴槽,进行其它试验。本仪器的最大特点是:全喷塑处理,经久耐用;双层缸结构,高精度控温仪,控温准确。 主要功能特点 1、采用智能液晶显示温控仪,控温迅速,响应快,超调小,控温精度达±0.1℃。 2、采用硬质玻璃缸及保温外套缸(称双缸),保温性能好,试样观察清晰。 3、采用台式、一体机设计方式,仪器整体性好,使用方便。 4、带有线控计时按键,用于实验时的计时显示和控制。 5、采用电动搅拌装置,浴缸内的温度均匀。 6、制冷器与主机分离式设计,防止压缩机工作振动带来的粘度计测试误差。 二、主要技术参数 1、工作电源:   AC(220±10%)V,50Hz±5%。 2、加热功率:   1600W。 3、搅拌电机:   功率6W;转速 1200r/min。 4、测温范围:    10℃~180(选配制冷器后可实现制冷)5、控温精度:   ±0.1℃。 6、恒温浴:     容量,25L;形式,内外两层缸(双缸)。 7、使用环境:   环境温度-10℃~+35℃,相对湿度<85%。 8、温度传感器: 工业铂电阻,其分度号为Pt100。 9、整机功耗:   不大于1800W。 10、毛细管粘度计:  4支(平氏或者乌氏客户可任选)11、外形尺寸:   530㎜×400㎜×670㎜ (长×宽×高,含浴缸等)。
仪研智造(上海)药检仪器有限公司 2025-02-20
多肽药物合成工艺
多肽药物研发具有广阔的研究空间和市场应用前景。2015 年全球多肽药物市场为 175 亿美元,据预测,2015-2025 年年增长率为10.3%,到 2025 年全球多肽药物市场将增至 469 亿美元。随着多肽药物价格的平民化、蛋白相互作用新靶点以及替代传统注射给药的新型给药技术迅猛发展,多肽药物的临床应用范围将进一步得以拓展。然而,多肽药物工业化生产中存在合成步骤繁琐、成本高等一系列技术问题,导致药品价格昂贵,大大增加了医疗负担,严重影响了这些多肽新药投放市场的速度。而我国多肽药物产业与欧美相比还
兰州大学 2021-04-14
新型凝乳酶药物
复方凝乳酶胶囊被广泛用于治疗小儿消化不良、吐奶等消化道疾 病,这类药物几乎无副作用,但是复方凝乳酶胶囊存在着蛋白水解谱 窄、疗效慢,适应症少的缺点。前期,本课题组在青藏高原发现了一 种新型的、对 α 酪蛋白、β 酪蛋白、γ 酪蛋白都具有较强水解活性的 凝乳酶 YS-1,该凝乳酶在物化特性上与传统复方凝乳酶胶囊中的小 牛皱胃凝乳酶较为类似,但蛋白水解谱广,可用于替换小牛皱胃凝乳 酶,提高传统复方凝乳酶胶囊功效、扩大其适应症,尤其在婴儿促消 化、止吐奶方
兰州大学 2021-04-14
Janus 药物共轭体
目前肿瘤化疗仍是大多数癌症患者不可缺少的治疗方法,但是化疗药物往往缺乏选择性,而且肿瘤细胞容易产生多药耐药性,严重影响化疗的效果。因此,研究可逆转肿瘤多药耐药性的功能性药物输送系统在提高化疗药物药效、降低毒副作用等方面将具有广阔的应用前景。纳米药物载体,如脂质体封装的抗癌药物在临床前和临床实验中已被证实能够通过降低毒性和增强疗效来提高治疗指数。然而,传统脂质体存在载药量低(一般<10%)、稳定性差、药物容易泄漏等问题,导致治疗效果不理想,并且容易引发机体的毒副作用。
北京大学 2021-04-11
肝癌靶向纳米药物
本项目提供了一种靶向肝癌细胞的纳米药物(LTAG-NPs)。该药物以天然多糖搭载临床广泛使用的铂类抗癌药物,具有合成简便,成分友好的特点,通过与肝(癌)细胞发生特异性结合,实现肝癌靶向效果。药物在肝部高效富集并在肿瘤细胞中释药。因此,LTAG-NPs在有效抑制肿瘤生长的同时,明显降低传统化疗药物强烈的毒副作用,提高患者顺从度和安全性。具有较高临床应用价值和转化前景。 体外释药实验表明,在肿瘤细胞环境下,LTAG-NPs 4 小时释放药物超过 20%,6 天药物全部释放,既在 6 天内缓慢持续释药;药物代谢实验证明,LTAG-NPs 在注射小鼠体内 24 h 后仍保持较高药物浓度,具有血液长循环效果;生物分布实验证明,纳米药物在肝部的富集是传统化疗药物的 5-6 倍,明显降低了在肾脏的积累;对于同时种有肝异位瘤和肺异位瘤的小鼠,LTAG-NPs 在肝异位瘤的富集量为肺异位瘤的 2.5 倍,说明具有优异的肝肿瘤靶向能力。体内抑瘤实验证明,纳米药物具有与传统化疗药物相当的抑瘤效果但毒副作用明显降低,尤其是明显降低了肾毒性。大剂量注射传统化疗药物的小鼠在5 天内全部死亡,而纳米药物组则保持存活率 100%,且小鼠体重稳步上升,体征良好。 以上动物实验全部由医院完成并进行相关评价
南开大学 2021-04-13
一种手性螺环磷酸和制备方法及其应用
本发明涉及一种手性螺环磷酸和制备方法及其应用。该手性螺环磷酸化合物具有式(1)结构的化合物,主要结构特征是具有手性螺双二氢茚骨架。该手性螺环磷酸化合物可以由具有螺环骨架的光学活性的1,1’-螺环二氢化茚-7,7’-二酚为手性起始原料合成。该手性螺环磷酸是一种新型的质子酸类有机小分子催化剂,可以广泛用于许多催化不对称有机反应中,特别是可适用在吲哚烷基化的不对称催化反应中,反应条件温和,产率好,对映体选择性高。
浙江大学 2021-04-11
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
首页 上一页 1 2 3 4 5 6
  • ...
  • 41 42 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1