高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种盐酸苯海拉明在制备治疗或预防流感病毒药物中的应用
已有样品/n公开了一种盐酸苯海拉明在制备治疗或预防流感病毒药物中的应用。选用完全无毒性浓度的盐酸苯海拉明进行抗病毒实验,结果显示这种小分子化合物具有显著的抗病毒活性并呈剂量依赖相关。接下来分析了盐酸苯海拉明抗流感病毒的作用周期,表明盐酸苯海拉明主要抑制病毒吸附和进入等病毒感染早期事件。最后检测盐酸苯海拉明对不同型和亚型流感病毒的抗病毒活性,结果显示盐酸苯海拉明可以抑制所有检测病毒株的复制且具有剂量依赖效应,表明盐酸苯海拉明抗流感病毒活性具有一定的广谱性。本发明的盐酸苯海拉明可以作为新的抗流感病毒药物
中国科学院大学 2021-01-12
大枣核苷提取物及其在制备辅助改善学习记忆功能药物及保健食品中的应用
【发 明 人】郭盛;段金廒;钱大玮;宿树兰 【摘要】 本发明公开了一种大枣活性提取物及其在制备辅助改善记忆功能药物或保健品中的应用。本发明首次采用大孔吸附树脂耦合离子交换树脂,制备大枣精制提取物,较传统的分离纯化方法分离效率更高,且分离得到的活性成分含量高,生物活性强,安全性高。小鼠避暗实验结果显示,精制大枣核苷提取物可显著延长小鼠进入暗室的潜伏期,降低小组进入暗室的错误次数;小鼠水迷宫实验结果显示,精制大枣核苷提取物可显著缩短小鼠到达终点的时间。表明精制大枣核苷提取物具有改善小鼠学习记忆功能的功效。因此,大枣有望开发成为新一代安全有效,用于辅助改善学习记忆功能的药物或保健品,同时也为大枣的深加工产业化开发提供了途径。
南京中医药大学 2021-04-13
内源性大麻肽类激动剂(m)VD-Hpα 在制备镇痛药物中的 应用
慢性和严重疼痛的控制一直是人们亟待解决的医学难题。目前已有多种药剂用于治疗多样化的病理状态,这其中包括阿片、非甾醇类抗炎药、抗惊厥药、抗抑郁药、克他命等(Drugs 2007, 2121: 2133)。但是,这些药物的副作用限制了它们的临床用药剂量和降低了其治疗效果。除了进一步研究慢性疼痛的病理机制和鉴定药物本身的镇痛机制外,临床上更需要的是有效地、无毒的和没有中枢副作用的治疗慢性痛的新药物
兰州大学 2021-04-14
用于检测雄激素类药物的单克隆抗体及酶联免疫技术及试剂盒
中试阶段/n该项目属于兽药残留分析和免疫学技术领域。本成果制备的单克隆抗体可以同时检测诺龙、甲睾酮、睾酮、群勃龙四种雄激素类药物,且检测灵敏度高,特异性好。
华中农业大学 2021-01-12
利用分子酶学、酶工程、基因工程和发酵工程开发新型酶制剂 及功能性食品
酶制剂产品包括角质酶、磷脂酶 A1、α-葡萄糖苷酶、β-葡萄糖苷酶、木聚糖酶、普鲁兰酶、异淀粉酶、生麦芽糖淀粉酶、β-淀粉酶等;功能性食品包括-环糊精、β-环糊精、γ-环糊精、大元环糊精、2-O-D-吡 喃葡萄糖基抗坏血酸(AA-2G)、低聚半乳糖、D-阿洛酮糖、异麦芽酮糖、海藻糖、L-茶氨酸、L-瓜氨酸、γ-氨基丁酸、短链芳香酯、 -熊果苷、低聚异麦芽糖、低聚龙胆糖等。 功能性食品的作用: 增强免疫力,抗衰老;防癌、抗癌;降低血脂和血压;保护肝脏;调节肠道菌群,改善肠道功能;促进维生素合成与吸收。
江南大学 2021-04-11
肖强研究员与国际著名科研团队合作在沸石分子筛膜领域取得重要进展
近日,我校含氟新材料研究所肖强研究员与国际著名膜科学家、美国工程院院士M. Tsapatsis教授团队合作,在国际顶级刊物《Nature Materials》上以全文(Article)形式发表了题为“One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultraselective transport”的研究论文,并同刊得到了国际顶尖科学家J. Caro教授和J. Kärger教授的推荐点评。  工业中混合物的分离约占到整个世界总能耗的10~15%,发展低能耗的工业分离过程始终是科技界的重要使命。沸石分子筛膜以其多孔性、耐溶胀、分子筛分等特性,在溶剂除水和气体分离方面展现了很好的分离效率,取得了重要应用。采用沸石分子筛膜对沸点相近的烃类(如二甲苯)异构体进行分离,有望在大幅降低能耗的基础上实现高效分离,一直是科学界和产业界的研究热点。MFI型沸石分子筛是一种广泛应用的催化剂和吸附剂,其孔径介于对二甲苯(PX)和邻二甲苯(OX)之间,非常适合二甲苯异构体的分离。  对二甲苯(PX)是聚酯工业的重要原料,广泛应用于纤维、胶片、薄膜、树脂和饮料等食用品包装的生产,是芳烃产业链的基础化工原料。高性能MFI沸石膜的成功研发有望大幅降低二甲苯异构体混合物的分离能耗,对PX行业持续健康发展具有重要意义。  团队前期研究结果表明,通过剥离多层MFI沸石(ML-MFI)可以制得开孔、可分散的二维(2D)MFI纳米片,将其沉积在载体上直接制备了具有异构体分离性能的MFI沸石膜。研究团队对2D MFI纳米片做了进一步电子显微学研究,首次在2D MFI纳米片上发现了共生的一维(1D)MEL沸石,通过计算模拟表明2D MFI中的1D MEL具有更刚性的孔结构,能产生更高的选择性。以此为指导,实验上制备了MFI沸石膜,对非稀释等摩尔的对/邻二甲苯混合物分离显示了前所未有的分离性能,在300℃下,PX通量达到0.5×10-3 mol m-2 s-1,分离因子为60,创造了新的世界记录,极大地推动了MFI沸石膜的产业化进程。
浙江师范大学 2021-04-30
具有6.3T矫顽力的钴-萘环氮氧自由基分子磁体材料及其制备方法
具有6.3T矫顽力的钴‑萘环氮氧自由基分子磁体材料及其制备方法,所述分子磁体化学式为[Co(hfac)2(EtONapNIT)]n,式中n为1到正无穷的自然数。其制备方法是将六氟乙酰丙酮钴的正己烷悬浮液回流超过两小时,降温并加入EtONapNIT的二氯甲烷溶液反应,室温挥发几天后得到目标产物。所述分子磁体材料的制备方法简单,反应条件温和,产率高,具有很好的空气稳定性。配合物在零场下展现出慢磁驰豫行为,2K时具有非常大的磁滞回环,矫顽场接近6.3T。这种具有大的矫顽场的分子磁体材料,可有效减少信息存储器件在环境微扰下产生的信息丢失情况,因此在高密度信息存储领域具有非常高的潜在应用价值。
南开大学 2021-04-10
一种抑制肿瘤侵袭和扩散的双重调控的超分子组装体的制备方法及其应用
本发明涉及抑制肿瘤侵袭和扩散技术,特别是一种抑制肿瘤侵袭和扩散的具有磁场和光照双重调控的超分子组装体的制备方法及其应用。本发明的目的是针对上述技术分析和存在问题,提供了一种可以抑制肿瘤细胞侵袭和转移,并且具有磁场和光照双重调控的超分子组装体,同时提供了该组装体的制备方法。/line本发明中的超分子组装体是一种能够通过光照和磁场诱导的形貌转化的纳米纤维聚集体。这些独特的能力是通过将生物相容性的靶向肽连接在氧化铁磁性纳米颗粒下与β-环糊精修饰的透明质酸非共价交联来完成的。更重要的是,由于癌细胞的表面的透明质酸受体过度表达,得到地磁定向聚合的多糖为基础的组装体,其可以在纳米纤维网状结构中特定地吸引癌细胞,从而抑制肿瘤细胞的迁移和挽救肿瘤细胞迁移的小鼠。本发明是实现生物超分子组装体对较弱的地磁场精确响应的第一个实例,为减少肿瘤细胞转移造成的死亡提供了一种新型的刺激响应性纳米超分子生物材料。
南开大学 2021-04-10
生科院钟伯坚研究组揭示南极嗜冷绿藻基因组水平适应极端环境的分子机制
我校生命科学学院钟伯坚教授研究组联合自然资源部第一海洋研究所等科研单位,对南极海冰生态系统特有的南极衣藻进行了基因组适应性进化研究,为理解南极植物适应极端环境的分子机制提供崭新的思路。 该研究利用三代PacBio测序、二代Illumina测序、10× Genomics和高通量染色体构象捕获技术(Hi-C)获得了南极衣藻高质量的全基因组序列,其基因组总长度为541.86Mb(Scaffold N50达到19.23Mb)。南极衣藻基因组是目前已知最大的绿藻基因组,其基因数目也是绿藻基因组中最多的,共编码19870个基因。基因组结构分析发现重复序列占其基因组序列的63.78%,重复序列含量为已发表绿藻基因组中最高。转座元件(TE)是基因组重复序列的主要组成部分,占整个基因组序列的40.67%。分析表明南极衣藻的反转录转座子发生了明显的扩张,是造成其基因组增大的主要原因。 本研究估算了南极衣藻的分化时间大约为34个百万年,与德雷克海峡开放导致南极极端低温形成的时期一致,推测南极衣藻的起源与南极极端低温的形成有关。研究发现南极衣藻通过水平基因转移的方式获得了冰结合蛋白,该蛋白可以与小的冰晶结合,具有抑制冰结晶和生长的功能。通过进一步的功能实验证实了南极衣藻中的冰结合蛋白具有提高生物抗冻能力的作用。因此,推测冰结合蛋白的获得对南极衣藻避免冰冻损伤和适应海冰中极端低温的环境十分重要。
南京师范大学 2021-02-01
磺胺酸-β-环糊精介导的超分子纳米粒子在胰岛素的控制释放方面的应用
本发明公开了一种磺胺酸‑β‑环糊精介导的超分子纳米粒子在胰岛素的控制释放方面的应用,用于对胰岛素的pH响应可控释放。本发明的超分子纳米粒子组装体,由两种水溶性和生物相容性糖类,磺胺酸‑β‑环糊精(SCD)和壳聚糖(CS)构成,并通过动态光散射(DLS),紫外‑可见光,扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征。结果表明,这种纳米粒子具有良好的稳定性和可控的加载/释放性能,使其成为胰岛素的良好载体。换句话说,纳米颗粒可以在胃的低pH环境中以高稳定性加载胰岛素,但是当移动到像肠的高pH环境时释放胰岛素。
南开大学 2021-04-10
首页 上一页 1 2
  • ...
  • 82 83 84
  • ...
  • 91 92 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1