数据科学与计算机学院在大数据及社交网络
得到三个重要结果:(1)在在线社交网络中,个体的传播力可以被精确地定义为最大连通渗流集团的大小与个体在该连通集团的概率的乘积。这里第一次给出了社交网络中个体传播力的简洁数学方程。(2)任何个体的影响力都可以在特征关联长度内,仅仅通过局部的网络结构信息来精确衡量,其误差会随该长度成指数衰减。这种现象与物理相变中临界行为之间有着深刻的理论关联。(3)基于上述发现,设计了一个优化算法来选择最具有影响力的个体。该算法不需要知道网络结构的全局信息,从而其计算时间复杂度与网络规模无关为一常数。在顶点数量以亿为单位的网络上,该算法时间复杂度比以往最快的贪心算法快上千万倍,且可以获得质量极高的优化解。
中山大学
2021-04-13