高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
安徽大学在生物分子动力学荧光成像领域取得新进展
项目成果/简介:观测活细胞内生物大分子的动力学过程和信号小分子对生物大分子的调控作用对于探索生理病理新机制及疾病治疗新方法具有重要的科学意义。 我校物质科学与信息技术研究院张忠平课题组(张瑞龙、田肖和、韩光梅、刘正杰),针对上述关键科学问题,通过设计一系列多响应、多重定位的新型光学探针,实现了活细胞内信号分子对蛋白/酶活性的调控以及遗传物质动力学的分子影像分析,在理解细胞内生物分子动力学领域取得了重要科学发现。代表性进展主要包含:(1)气体信号分子对细胞内酶活性的调控; (2)膜穿透性碳点对活体内DNA和RNA结构及动力学的超分辨影像分析;(3)超分辨成像揭示活性氧调控线粒体核蛋白动力学;(4)超分辨STED和电镜关联成像对细胞微管蛋白超精细结构的分析。 上述进展解决了生物探针对细胞内多种组分和细胞器的特异性识别问题,不仅有效避免了荧光光谱的重叠,还同步结合电镜对生物大分子精细结构的进行研究,为我校双一流学科生物医学探针和成像方向再添新成果。
安徽大学 2021-04-10
一种超滤膜成孔剂溶出动力学实验装置
本实用新型涉及一种超滤膜成孔剂溶出动力学实验装置,包括动力驱动装置、内槽和外槽;所述内槽内设有第一搅拌头,所述外槽内设有第二搅拌头;所述动力驱动装置用于驱动第一搅拌头和第二搅拌头的转动;所述外槽内设置用于固定内槽的支架;所述内槽内设置有放置架,所述放置架与水平面夹角为30‑45度。本实用新型的超滤膜添加剂溶出动力学实验装置可以实现准确控制凝胶浴温度,可开展温度对添加剂溶出动力学的影响等相关实验研究。保证凝胶浴中各个点位添加剂的浓度始终是均一的,有效克服取样点位对测量结果的影响,使得实验结果更精确,更有效的研究超滤膜成孔剂溶出动力学。
青岛农业大学 2021-04-13
科研进展|西湖大学杨剑团队开发MeDuSA研究细胞状态动力学
北京时间2023年7月13日23点,Nature Computational Science在线发表了西湖大学博士研究生宋立阳领导的一项研究,题为“Mixed model-based deconvolution of cell-state abundances (MeDuSA) along a one-dimensional trajectory”。
西湖大学 2023-07-17
外加剂及电动力学对鬼针草修复Cd污染土壤研究
一、项目分类 关键核心技术突破、显著效益成果转化 二、技术分析 本成果主要在添加外加剂(EDDS和槐糖脂)、电场以及极性交换电场和外加剂共同施加时,鬼针草修复Cd污染土壤。主要对比不同条件下鬼针草的株高、生物量、含水率、根冠比、鬼针草积累的Cd含量、富集系数、抗性系数和转运系数,研究上述有关因素对鬼针草修复Cd污染土壤的效果。
中国矿业大学 2023-07-13
用于对船舶推进器模型执行力学和轴系振动测量的系统
本发明公开了一种用于对船舶推进器模型执行力学和轴系振动测量的系统,包括连接壁、磁性盘式联轴器和第一、第二传动轴,其中连接壁呈竖直设置的舱壁结构,并安装在螺旋桨与驱动电机之间;磁性盘式联轴器由两个相互对置且分别安装在连接壁左右两侧的磁盘共同组成;两个传动轴各自设置在连接轴的两侧,并用于将驱动电机和螺旋桨与磁性盘式联轴器分别相联接;此外,在第二传动轴处于连接壁一侧的轴端设置有力传动器,并在中间连接壁上安装有加速度传感器。通过本发明,能够使得电机与螺旋桨及测量元件从连接上彻底隔离,杜绝电机振动给测量过程带来的不利影响,同时显著提高测量的精度和可信度,并使得测量系统的水密环节变得容易。
华中科技大学 2021-04-14
基于换道行为的主线收费站ETC指示标志设置安全距离计算方法
本发明公开了一种基于换道行为的主线收费站ETC指示标志设置安全距离计算方法,包括如下步骤: 1、计算驾驶员开始对ETC指示标志的内容进行读取的位置到驾驶员开始准备实施换道、减速等行动的位置之间的距离L1; 2、计算驾驶员开始对ETC指示标志的内容进行读取的位置到ETC指示标志所在位置之间的距离L2; 3、计算驾驶员开始准备实施换道、减速等行动的位置到驾驶员完成换道、减速等行动准备通过闸机的位置之间的距离L3; 4、计算ETC指示标志前置距离L4,L4=L1+L3?L2; 5、计算具体ETC收费车道布置方案对应的ETC指示标志设置安全距离f(N,n)max。该方法提供了一种针对ETC与MTC共存的主线收费站ETC指示标志设置安全距离计算方法。
东南大学 2021-04-11
新型的碳海绵的制备
近年来,随着微型化、便携式电子产品的迅猛发展,基于超级电容器和电池的超薄、柔性储能器件受到越来越广泛的关注。组装该类高性能的柔性储能器件需要三维柔性电极材料。三维柔性碳电极是最佳的选择,主要因为其惰性的化学特征,而且可以用于几乎所有的电解质体系。目前文献报道的三维柔性碳电极主要是基于碳纳米材料,如碳纳米管和石墨烯等,然而这类柔性电极制备比较复杂,成本较高,难以实现大规模化生产。 我们创新性地采用直接高温碳化聚合物泡沫的方法成果制备了碳海绵。该方法简单,且易于大规模化生产。所制备的碳海绵具有以下特征: 稳定的三维多孔网络结构; 良好的弹性; 可控的孔隙度,孔隙度范围:95-99.9%; 可控的密度,密度范围:3-100 mg/cm3; 可控的导电性,导电率范围:1-30 s/cm; 超疏水和超亲油性。
江西师范大学 2021-05-05
新型肺炎患者临床特征研究
2020年2月7日,武汉大学中南医院彭志勇团队在国际顶级医学期刊JAMA在线发表题为“Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China”的研究成果,该研究涉及138名新型冠状病毒感染的肺炎患者的单中心病例, 在41%的患者中怀疑与人对人的医院相关的2019-nCoV传播,有26%的患者需要重症监护病房入院,而4.3%的患者死亡。NCIP全基因组测序和系统发育分析表明,2019-nCoV与与人类严重急性呼吸综合征(SARS)和中东呼吸综合征(MERS)相关的β冠状病毒截然不同。 2019-nCoV具有以下特征:冠状病毒家族,并被归类于beta冠状病毒2b谱系。2019-nCoV与蝙蝠冠状病毒非常相似,据推测蝙蝠是主要来源。尽管仍在调查2019-nCoV的起源,但目前的研究证据表明,是通过在华南海鲜批发市场非法出售的野生动物的传播造成的。
武汉大学 2021-04-10
新型皮革鞣剂鞣法开发
成果描述:铁糖配合物利用来源丰富、成本较低的硫酸亚铁和糖形成二元配合物,该二元配合物进一步与胶原形成Fe(Ⅱ)-有机物-胶原的三元配合物,使得该三元配合物有抗氧化、耐热稳定性高的特点,保证在胶原网络内部形成理想的鞣性模块刚性结构,最终完成具有优良的抗氧化、高收缩温度(可达90 ℃以上)、色调浅淡的结合鞣革。为皮革的清洁无毒鞣法,废弃物可再生利用探索新途径。市场前景分析:制革工业,清洁化改造。与同类成果相比的优势分析:1.形态为淡褐色固体、液体均可;有效含量30%;10%溶液pH~3。 2.鞣制方法为结合鞣。 3.成革收缩温度>90 ℃。 4.成本低廉,适合做里子革、箱包革。 国际领先。
四川大学 2021-04-10
新型催化精馏规整填料技术
技术简介: 催化精馏技术在一个设备内整合催化反应与精馏分离,在催化反应进行的同 时,通过精馏过程把产物从体系中分离,推动反应平衡向右移动。它适用于需要 催化剂进行均相或非均相催化来提高反应速率,且反应物的转化率和催化剂的选 择性通常达不到 100%的情况。 天津大学开发的新型催化精馏规整填料技术,在实现催化精馏耦合过程的同 时,可有效提升设备的通量以及催化剂的装填量,并降低压降。相比于传统的催 32天津大学科技成果选编 化精馏填料,可提升通量 50%以上。填料内部的特殊结构设计可有效提升气液固 三相的传质,促进物料在催化剂内部的扩散,大大提升了反应效率和分离效率。 目前该技术已经在石化行业中的轻汽油醚化,MTBE,叔丁醇脱水,碳四加氢异 构化等工艺中得到了应用。 应用前景分析: 催化精馏最早应用于甲基叔丁基醚(MTBE)和乙基叔丁基醚(ETBE)等合成工 艺中,现已广泛应用于包括酯化、醚化、异构化、烷基化、叠合过程、烯烃选择 性加氢、氧化脱氢、碳一化学、水解、酯交换和其他反应过程等多种平衡反应。 化工行业中有着巨大的市场需求,且由于催化剂的活性问题,每三年即需要更换 一次,因此该需求有较好的持续性。传统捆扎包式催化精馏填料存在通量小,压 降大,易发生偏流和短路,分离和反应效率低等问题。新型崔化精馏规整填料技 术完美的解决了上述问题,目前,该填料已经在多个工艺上成功工业化应用,为 企业节约了大量的投资费用和操作成本,产品转化率等也有明显提升。 经济效益预测: 相比于传统的捆扎包式的催化精馏填料,该新型催化精馏填料技术可提升通 量 50%以上,节约固定设备初投资 30%以上,节约操作费用 30%以上。相比于 传统的先反应再分离的技术,可节约设备初投资 50%以上,节约操作费用 50% 以上。 技术成熟度:产业化项目
天津大学 2021-04-11
首页 上一页 1 2
  • ...
  • 34 35 36
  • ...
  • 278 279 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1