高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
新型水下防爆结构
本实用新型公开了一种新型水下防爆结构,包括从上到下依次设置的柔性缓冲层、反射面板、消能 层,其中,柔性缓冲层包括弹性板和内嵌于弹性板中的第一波纹状钢板;反射面板由硬质材料制成;消 能层由装满细砂的封装壳构成,第二波纹状钢板嵌入细砂中。本实用新型装置适用于水下防爆,将反射 消能与变形消能巧妙的结合在一起,消能防爆效果大幅提高;采用泡沫,钢板,细砂等材料,价格便宜 且材料易得;利用水下爆炸的特性,采用
武汉大学 2021-04-14
新型基因编辑技术
该技术可利用人体自身存在的机制进行RNA的单碱基编辑,避免了任何由于表达外源效应蛋白而引起的潜在问题。 新型基因编辑技术(魏文胜团队)   LEAPER (Leveraging Endogenous ADAR for Programmable Editing on RNA)是一类具有我国自主知识产权的新型基因编辑技术,该技术可利用人体自身存在的机制进行RNA的单碱基编辑,避免了任何由于表达外源效应蛋白而引起的潜在问题。LEAPER技术具有高精度、易于递送、长时效、高安全性等多种优点,并在包括遗传性疾病治疗方面展现出了可观的优势及潜能,成功为生命科学基础研究和疾病治疗提供了一种全新的工具。    LEAPER技术原理   近年来,以CRISPR/Cas9为代表的基因组编辑技术在生物医学等诸多领域产生了深远的影响,但存在的一系列问题使该技术在临床治疗应用中遭遇瓶颈。根源之一在于当前的基因编辑体系依赖于外源编辑酶或效应蛋白的表达,从而造成 (1) 蛋白分子量过大使得通过病毒载体进行装载及人体内递送十分困难;(2) 由蛋白过表达引起的DNA/RNA水平的脱靶效应;(3) 由外源蛋白表达引起的机体免疫反应及损伤;(4) 机体内的预存抗体使外源编辑酶或效应蛋白被中和从而导致基因编辑失败等。   为解决上述问题,摆脱传统技术依赖于外源蛋白表达的桎梏,2019年魏文胜团队建立了具有我国自主知识产权的名为LEAPER的新型基因编辑技术。与RNAi类似,LEAPER充分利用了细胞中天然存在的机制:仅用一条RNA 就实现了精确高效的RNA单碱基编辑,从而避免了任何由于表达外源效应蛋白而引起的各种潜在问题。研究人员利用LEAPER成功修复了来源于Hurler综合征病人的缺陷细胞,为未来相关疾病的治疗奠定基础。此外,LEAPER还有希望衍生出多种延展型技术,为生物医学等研究提供新型工具。
北京大学 2022-08-12
新型智能透光材料
该类材料实现了系列突破: 1. 价格便宜,采用的元素是原来传统采用的银材料的 1/60; 2. 制备工艺先进、能耗低、产量大,便于大规模生产; 3. 变色能力优越,能从完全无色透明转换到近黑色, 实现高度可逆性,并能阻断 80%以上的紫外光。 
中国科学技术大学 2023-05-17
新型人工关节
本成果面向国家/地方植入医疗器械的重大战略需求,紧跟国际研究前沿, 围绕生物材料生物功能性及植入体药械结合的研发主线,基于细胞外微环境原理, 探究生物材料界面微环境特征如何调控骨/骨关节修复的核心科学问题,系统地 研究生物材料界面微环境特征与细施相互作用规律及分子机制,提供生物材料表 面功能化关键技术,最终为骨/骨关节修复提供新材料。 植入体与宿主的生物反应首先发生在材料界面,诱发细胞粘附到组织形成的 生物级联反应。如何构建生物功能性界面并赋予植入体主动刺激细胞/组织功能 的性能,提高其使用寿命,是医疗器械研发关键科学问题之一。本项目创建生物 功能性界面与骨髓基质干细施双向“交流"调控的理论假说。利用双酸腐蚀及阳 极氧化等技术制备系列钛基多尺度微米、微/纳米、纳米结构,揭示微/纳米结构〉 纳米结构〉微米结构的生物学响应规律。率先将层层组装技术(LBL)技术引入到钛 基生物材料界面工程,获专利授权。进而,利用LBL技术构建生物因子插层多层 结构,调控骨髓间充质干细胞的分化,并促进植入体的骨整合性。首次在钛材表 面构建“三明治”界面结构,调控成骨细施/破骨细施动态生长平衡,开发出具有骨质疏松治疗功效的钛基新型植入器械。
重庆大学 2021-04-11
新型体育教学器材
产品详细介绍
武汉天力体育科技发展有限公司 2021-08-23
新型多媒体教室
新型多媒体教室主要适用于常规授课;具有高清显示、无尘书写、课堂签到、随堂测试、投屏、智能控制、常态录播等功能
北京鸿合爱学教育科技有限公司 2022-06-09
基于普通光源的镜面物体三维重建方法、装置和设备
1. 痛点问题 目前国内外三维重建主要是采用“立体视觉法”、“激光扫描法”、“结构光法”等的传统方法,这些方法都需要特定的光源设备(如激光,红外等),设备造价成本高,且对于镜面、晶体等物体进行三维重建时,还需要在重建物体表面进行去反光、去透光的处理(如喷涂显像剂等)才能进行三维重建,存在重建效率低(一般需1小时以上)、成本高、难以普及等痛点。 2. 解决方案 本技术是基于局部的隐式可微体渲染方法,解决上述痛点问题,突破基于普通光源下镜面、非镜面、晶体等物体的三维重建,实现可应用在多种领域,且低成本、高效率(全过程仅需10分钟)、高精度、易普及的三维重建设备及应用。 3. 合作需求 1)寻求资源对接,目标合作领域为三维重建相关领域,目标合作企业为对三维重建应用有需求的各行业; 2、孵化资源,产品化、市场化所需的资金。
清华大学 2023-04-19
铝电解槽输出端节能技术(HORR)
项目成果/简介: 简 介 一、项目背景 自20世纪80年代我国有色金属工业提出“优先发展铝工业”的战略发展方针以来,我国铝工业有了长足的发展,电解铝工业的发展更是突飞猛进。经过近30多年坚持不懈的努力,实现了跨越式发展。从引进“日轻”160kA预焙槽技术到自主开发280kA特大型铝电解槽的开发成功,使电解铝整体技术与装备水平进入世界先进行列。目前,500kA~600kA以上超大型电解槽已实现了工业规模化推广应用。40年来由于技术的进步,电解铝单位能耗下降1000kWh/tAl。 (1)高耗能仍是主要特点。尽管铝工业技术上取得了极大的进步,然而时至今日,铝电解的能量利用率仍然仅仅50%,大约有一半的能量都以热量形式散发在大气中(图1)。作为高耗能产业电解铝工业的节能减排仍将是今后相当一个时期的核心任务。  (2)电解铝是碳排放大户。进入21世纪以后,中国电解铝产量的增长速度明显加快,从2000年的279.41万吨增加至2020年3731.7万吨,连续多年成为世界第一原铝生产大国,同时电解铝的节能减排受到广泛关注。2020年,电解铝行业二氧化碳总排放量约为4.26亿吨,约占全社会二氧化净排放总量的5%。 (3)对供电质量要求高,不利于可再生能源电力发展。作为用电大户的铝冶炼企业,传统技术不具备调峰能力,这是由于其核心装备铝电解槽是在预设的热平衡条件下设计的,任何偏离预设热平衡的电力供给都可能导致严重过热或冻结。由于这一限制,现代铝电解槽的运行对供电质量要求相当苛刻(95%一级负荷),因此,作为用电大户的电解铝行业,基本没有调峰能力,对供电系统的适应性和灵活性小。 国际能源署发布的《电力系统转型现状2018》指出:电力系统灵活性已经成为全球优先发展方向。铝冶炼企业急需增加调峰能力,不仅可以适应未来新能源比例逐渐提升带来的电网供电波动,而且能主动调峰成为电力系统灵活电源点运行。 2020年12月16日,习近平主席在2020年中央经济工作会议上指出,要做好碳达峰、碳中和工作,要抓紧制定2030年前碳达峰行动方案。2021年3月15日,习近平总书记在中央财经委员会第九次会议中强调,“要把碳达峰、碳中和纳入生态文明建设总体布局”,指出“要构建清洁安全高效的能源体系,控制化石能源总量,着力提高利用效能,实施可再生能源替代行动,深化电力体制改革,构建以新能源为主体的新型电力系统。” “双碳目标”的提出,给电解铝行业提出了新的课题。开展大型铝电解槽能量平衡及余热回收技术的工业系列化应用,通过国内外技术的集成创新,形成一整套的生产工艺技术和先进的装备,大幅提高电解铝行业的能源利用率,对于实现电解铝行业“双碳目标”具有重大历史性意义。 二、技术简介及工作基础 郑州轻冶科技股份有限公司与郑州大学在15年研究成果积累的基础上,从2017年开始,在铝电解槽能量流优化及输出端节能(余热回收)领域联合国内外多家企业和科研单位,启动郑州市协同创新重大专项,目前“铝电解槽能量流优化与输出端节能(余热回收)技术及成套工业系统(HORRS系统)”已完成工业化试验,进入工业化示范运行阶段。 开创了电解铝工业输入端与输出端“双端节能”的先河,并为进一步工业应用奠定了基础。 1、主要内容 建立独立的铝电解能量流在线优化调节模型(HORR技术),实现控制变量与控制目标的“解耦”,为进一步实现电解铝“输入端节能”的极限优化工艺生产奠定了基础,进一步降低电能消耗; 成功研制了电解铝专用“高效集热装置”,通过国际合作开发成功国际领先的核心技术,并实现了关键设备的量产。在此基础上,进一步开发了铝冶炼过程散热回收系统(HORRS系统),实现大幅节能;铝电解槽能量利用率可由原来的不到50%提升到60%。 研制铝电解槽多参数传感器与快速检测分析系统,并开发了铝电解槽数字化基础上的能量平衡智能化系统; 采用能量流调节系统,为电解铝柔性生产提供了技术保障,初步实现了利用电解铝厂巨大电能容量协助当地电网实现蓄能调峰运行,调峰能力达到±20%。 2、当前工作进展 2019年起,在河南中孚实业股份有限公司4台400kA大型铝电解槽上,开展了“铝电解槽能量流优化及智能调控技术开发”协同创新重大专项工业示范应用。2021年3月11日,首台400kA电解槽余热已成功与巩义示城市供热网实现互联,回收利用热量约占电解槽总耗能8~10%,预计到2021年5月底,全部4台电解槽将整体投运。 三、经济及社会效益 (1)技术指标 本项目工业试验完成后,可实现电流效率≧94%;槽电压低于3.9V,折合吨铝节电800~1000kWh以上,电解铝能量利用率提升8~10% 实现电解槽调峰运行 该技术应用后,铝电解槽可实现蓄能调峰20%,有利支持新能源电力负荷的消纳,减小新能源电源增加后带来的峰谷差,为国家构建新型电力系统提供支撑。 实现电解铝厂与区域、城市融合发展 根据电解铝行业(火-电-铝)的特点,将回收余热资源供入城市供热系统用于冬季居民采暖;夏季并入配套发电厂会热系统,用于发电;也可用于根据产业园区布局,可为周边工业用户(如铝加工、氧化铝厂等)提供工业生产用热源或大规模工业制冷,实现余热资源的高效利用。 社会效益 按照未来推广应用2500万吨计算: 年可节电250亿kWh; 年可减排:2492.5万吨二氧化碳; 年可消纳新能源电量:675亿kWh。效益分析: (1)技术指标 本项目工业试验完成后,可实现电流效率≧94%;槽电压低于3.9V,折合吨铝节电800~1000kWh以上,电解铝能量利用率提升8~10% 实现电解槽调峰运行 该技术应用后,铝电解槽可实现蓄能调峰20%,有利支持新能源电力负荷的消纳,减小新能源电源增加后带来的峰谷差,为国家构建新型电力系统提供支撑。 实现电解铝厂与区域、城市融合发展 根据电解铝行业(火-电-铝)的特点,将回收余热资源供入城市供热系统用于冬季居民采暖;夏季并入配套发电厂会热系统,用于发电;也可用于根据产业园区布局,可为周边工业用户(如铝加工、氧化铝厂等)提供工业生产用热源或大规模工业制冷,实现余热资源的高效利用。 社会效益 按照未来推广应用2500万吨计算: 年可节电250亿kWh; 年可减排:2492.5万吨二氧化碳; 年可消纳新能源电量:675亿kWh。知识产权类型:发明专利知识产权编号:202010575520.0 202010575597.8 202021168838.9技术先进程度:达到国际领先水平成果获得方式:与国(境)外合作获得政府支持情况:省级以下计划/专项类别:郑州市协同创新重大专项获得经费:1000.00万元自筹资金:1000.00万元自筹资金来源:企业自筹
郑州大学 2021-04-11
聚酯装置节能降耗优化运行技术
该项目针对聚酯行业引进装置能耗高、竞争力弱的背景展开,结合实际工业反应器及其生 产、操作状况,在理论分析、实验研究和计算的基础上,开发了酯化过程宏观反应动力学模型 和缩聚过程的宏观反应动力学模型。通过采集的数据对模型进行进一步的校核和不断地修正, 获得了全面良好反映聚酯装置特性的模型。通过模型寻优,对操作参数进行较小的调节,根据 调整后的装置具体生产情况,对模型进行进一步的验证和校核,并在新的操作点周围的一个新 的较小的范围内对模型进行进一步的寻优。采用这种逐步外延的寻优技术,使装置平稳地移到 最优操作点上,在提高等级品率、降低能耗的同时保证生产的顺利进行。该项目通过系统的信 息采集、信息处理对系统进行优化,并在工业装置上实施,具有投资小、收益高的特点,尤其 适用于旧的聚酯生产系统信息化改造。同时,该项目的技术也可推广到相关聚合物过程的节能 降耗等过程优化项目中。该项目已在洛阳石化、上海石化等企业得到应用,流程热媒用量下降 8%以上,创造了1813万元/年的经济效益。该项目所包含的相关技术获2008年中国石化集团科 技进步三等奖、2008年国际工业博览会高校展区优秀展品奖。 该项成果具有国际先进性,可直接推广应用到国内其他聚酯装置。此外,该成果中的建模 技术、优化技术等亦可以推广应用到其他石油化工生产过程中,采用自动化技术提升传统产业 生产技术水平,推动我国石化工业科技进步,为信息化带动工业化,实现社会生产力的跨越式 发展,提供强有力的示范作用。
华东理工大学 2021-04-11
高效节能机械蒸汽再压缩(MVR)技术
蒸发浓缩、结晶、干燥等是化工、医药、食品、环保等多个行业最为普遍采用的工艺过程之一,众多企业花费在蒸发、干燥环节的成本占到总成本的50%以上,均迫切需要寻找一种高效节能的蒸发技术。 MVR是国际上最先进的蒸发技术,是替代传统蒸发器的升级换代产品。该项技术一直被北美和欧洲等一些发达国家掌握。 技术特征 MVR系统是一项高效节能的技术,较常规的单效蒸发设备而言,可节省标准煤85%以上,比三效蒸发技术节能65%以上。
南京航空航天大学 2021-05-11
首页 上一页 1 2
  • ...
  • 14 15 16
  • ...
  • 113 114 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1