高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
带玻璃视窗医用一单元双门互锁传递窗
产品详细介绍双门互锁传递窗 我公司是专业生产医院消毒供应室中心设备改造及不锈钢辅助器械的厂家,在全国均有销售,主要产品医用煮沸消毒器、干燥柜、全自动喷淋清洗消毒器、三频超声波清洗器、多槽式超声波清洗消毒器、高压水枪、空压机、器械串、光源放大镜、医用水槽、不锈钢打包台等不锈钢供应室、手术室清洗消毒中心全套设备。24小时销售维修热线:13215694991/13275601658 一单元双门互锁传递窗参数:产品型号:JK-1068外形尺寸:550(L)×750(W)×550(H)mm通道尺寸: 500(L)×550(W)×500(H)mmMMCDC-363外形尺寸:550(L)×550(W)×550(H)mm通道尺寸: 450(L)×500(W)×450(H)mm 双门互锁传递窗技术说明:                                ①采用304优质不锈钢制作;②通道内带紫外线灯,可对传递窗内消毒;③双门通道式传递口实现无菌区与外界的隔离;④门带玻璃视窗,可观察传递窗内物品;⑤特殊的双门互锁功能避免人为地操作失误;⑥用于无菌物品存储、发放。售后承诺书:本项目的货物质量保质期为原装全新合格产品自验收通过之日起三包一年,终身保修维护。遇严重质量问题包换,保修期后负责终身维修。保修服务均为制造方上门保修,既有制造方派专员到用户设备现场维修,也可由制造方负责将设备送回厂家维修,并负责由此产生的一切费用。                    免费送货上门,免费安装、调试及相应人员培训,免费上门维修,终身维护保修,超过保修期,维修只收取零部件成本费。 
合肥金尼克机械制造公司 2021-08-23
TL138-TEB 嵌入式双核实验箱
实验箱简介 产品链接:https://www.tronlongtech.com/products/45.html(点击查看) 产品系列:C6000,Cortex-A9 匹配课程:《DSP技术与应用》,《ARM技术与应用》 处理器架构:DSP,ARM · 基于TI OMAP-L138定点/浮点DSP C674x + ARM9双核处理器,主频 456MHz,高达3648MIPS和2746MFLOPS的运算能力;· 可拆式新型实验箱,使用灵活,性价比高。由核心板、实验开发底板、实验拓展板、触摸屏、仿真器及相关实验配件组成,可选3寸全功能触摸彩屏信号源;· 实验主板标配7寸可触摸电阻屏,支持RS232、RS485、VGA、SD、SATA、USB、USB OTG、RTC、EMIF、uPP、VPIF、SPI、I2C、以太网口、音频输入输出接口等接口;· 实验拓展板支持:步进电机、直流电机(配霍尔传感器)、4*4矩阵键盘、200万CMOS数字摄像头、蜂鸣器、8路16位200K采样率ADC输入、10位1.21M DAC输出;· 实验拓展板上支持安装可拆卸亚克力保护板,保护实验电路;· DSP+ARM双核工业级核心板,尺寸仅55mm*33mm,采用精密工业级B2B连接器,可用于科学研究、毕业设计、电子竞赛、产品开发使用;· 不仅提供面向教学的实验资源,而且提供工程应用上的开发例程;· 适用于图像处理、音频处理、信号处理、通信、测控、自动化等教学领域。 TL138-TEB实验箱主体   TL138实验箱主板硬件资源图解1 TL138实验箱主板硬件资源图解2 TL138实验拓展板硬件资源图解 1 TL138实验拓展板硬件资源图解 2
广州创龙电子科技有限公司 2022-05-30
医用干燥柜/干燥箱/单门/双门器械干燥柜
产品详细介绍 单门医用干燥柜/双门医用器械干燥柜 JK-DYG300,G400,DYG500,DYG600型医用干燥柜/医用器械干燥柜是我公司最新开发的一种大容量综合医用干燥设备,主要能满足医院的各类腔镜、显化瓶、手术刀、止血钳‘镊子、抽吸装置、mazui导管、换药管、各种盘子,圆桶、测压器等器械和物品在灭菌前的彻底干燥,达到灭菌前的干燥指标外形美观,操作简单灵活。
合肥金尼克机械制造有限公司 2021-08-23
TXYS-6M有压梁双头铣边机
设备用途及特点 一、 用途 TXYS系列铣边机是考察国内外同类产品的基础上研发而成的以铣代刨、焊接前加工板材坡口的先进高效的铣削设备。相对于刨边机,节省能源。是压力容器、造船、电力、化工、钢结构等行业实现焊接自动化必不可少的装备。 二、特点 1、独有的动力头构造,绝无漏油现象。 2、动力头任意铣削0 — -45°;0 — 80°坡口; 3、滑触线安装于导轨下侧,有效防止铁屑进入造成故障; 4、铣削中心缩短,减少震动,精度提高; 5、往返铣削,提高铣削效率; 6、优化行走机构,稳定性提高; 7、国标刀盘,互换性强; 8、铣削使用范围扩大; 9、床体振动时效消除应力,长期使用无变形; 10、独有完善的液压系统,采用自动保压系统,当压力达到设置值时,油泵电机自动停止工作,待低于最小设置值时,重新启动。既节约电能,主要可以减少液压油长期挤压引起的热量,更好地延长各方面的使用寿命。 11、油缸活塞直80mm,活塞杆镀铬处理,采用骨架式密封圈,经久耐用不易漏油。油缸压脚下面积为:300*190。 12、设备结构合理,运行平稳。
山东省青腾机械科技有限公司 2021-06-17
南昌双天使生物科技开发有限公司
南昌双天使生物科技开发有限公司注册地在中国江西省南昌市青山湖区。2021年1月29日成立。是中外合资经营企业。法人代表是曹正洪。双天使生物是一家抗肿瘤新药研发商,主要从事新型靶向抗肿瘤药物的新药研发。其候选药物SF-2是全球首创同时具有两类三个重要靶点的抗肿瘤小分子药物,能解决联合用药带来的毒副作用叠加、代谢不同步和医疗费用高等问题,具有重大临床应用价值。
南昌双天使生物科技开发有限公司 2021-11-01
一种环形索承网格结构的无支架施工方法
本发明公开了一种环形索承网格结构的无支架施工方法,即上部网格分单元吊装至先施工的索网上拼装。环形索承网格结构主要包括柱子、外环梁、上部网格、径向索、环向索和支撑杆。先采用斜向牵引的方法提升结构的径向索和环向索至高空,然后在结构索网下方安装工装配重索和反力架装置并张拉工装配重索,形成支撑索网;再分单元吊装上部网格至支撑索网上,同时通过反力架装置调节工装配重索使控制节点处于设计标高;最后卸除工装配重索和反力架装置,结构成型。该施工方法省去了支架的施工费用,可双向、实时、精确调整施工过程中控制节点的标高,无需主动张拉拉索,有利于看台保护,实现索承网格结构的绿色装配化施工。
东南大学 2021-04-11
一种FRP预应力筋无砟轨道板及其制备方法
本发明公开了一种FRP预应力筋无砟轨道板,包括沿纵长方向延伸的板体,沿板体厚度方向设有多层受力筋网片,所述受力筋网片水平布置在板体内,受力筋网片包括沿板体横向延伸的数根钢?连续纤维复合筋以及沿板体纵长方向延伸的数根高强钢筋,钢?连续纤维复合筋和高强钢筋正交排布;所述板体内沿纵长方向和横向均还设置数根FRP预应力筋,FRP预应力筋位于相邻两层受力筋网片之间;本发明还公开一种FRP预应力筋无砟轨道板的制备方法;采用钢?连续纤维复合筋和传统高强钢筋组成受力筋网片,提高了轨道板的绝缘性能;采用FRP预应力筋来增加开裂荷载,提高了轨道板的耐疲劳性和耐久性能,该方法无需其他绝缘措施,可有效降低生产成本。
东南大学 2021-04-11
机械臂无模型视觉反馈控制及其自适应操作应用研究
一、项目简介 随着科技进步和社会需求的发展,机器人手/臂除了工业生产,也越来越多用于服务人类的其它各个领域,这必然会使机器人承担比工业中更加多样的操作任务,面临更加多变的工作环境。因此,国内外对非结构自然环境下、具备自主操作能力的机器人的研究十分重视。当前,具备视觉感知能力的机器人已被公认为机器人发展的主流趋势,将视觉与机器人操作相融合,是对人类行为的模拟,由此产生的视觉伺服控制方法为机器人自主操作能力的实现带来了新的思路,代表了机器人的先进控制技术,也是促进机器人智能化发展的一个重要驱动。可以预见,未来的视觉系统将会成为机器人名副其实的眼睛,视觉伺服技术在机器人自主操作中将具有不可替代的作用。 视觉伺服利用视觉传感器提供的环境信息对机器人运动进行实时反馈控制,涉及机器人机械几何设计、运动学和动力学、自动控制理论、计算机视觉图像处理和摄像机标定等,是智能机器人领域中具有重要理论意义的研究课题之一。迄今为止,机器人手/臂的视觉伺服方法在太空遥操作、机器人手术、水果采摘、工业装配、焊接、抓取以及微操作等方面得到越来越多的应用。然而,现阶段可实际应用的方案主要面向特定的标定环境、模型参数已知,机器人操作是编码定式的,不具备模型未知条件下的自主操作能力,特别是当面向未来的刚-柔-软体共融机器人时,其柔型结构造成的运动模型及参数的变化与不确定性,必然使现有确定模型的研究方法失效。因此,无模型(目标几何模型,手眼标定模型,机器人运动模型)、非结构环境下的自适应操作对机器人提出了新挑战,是机器人手臂(尤其柔型手臂)视觉伺服控制研究的难点与前沿问题,不断深入对非结构环境下、无模型的机器人手/臂视觉伺服控制的研究具有重要的理论和现实意义。 在非结构自然环境下使机器人像人一样协调自适应操作是当今机器人研究领域的一项尚未实现但又令人感兴趣的研究工作。从理论上看,非结构自然环境下实现机器人柔性操作,就当前研究依靠单一的控制器设计是困难的。因此,本项目借鉴人的手眼协调操作是自适应学习过程,涉及智能进化和行为优化,将随机动态规划理论,结合约束规则与最优化控制,探索一种变参手眼关系,实现机器人在非结构自然环境下的自适应操作。 二、前期研究基础 研究团队一直致力于机器人视觉反馈控制的研究。在基础理论研究上,针对无标定视觉伺服控制方案与设计,均提出了一些新型方法,有扎实的理论基础和知识积累,并不断跟踪和深入在无模型视觉伺服控制的方面研究和前沿问题。目前,已经着手在无模型视觉伺服的可靠性、稳定性控制方面做了充分的探索工作:针对机器人无标定全局稳定操作问题,研究了一种鲁棒卡尔曼滤波(RKF)合作Elman神经网络(ENN)的全局稳定视觉伺服控制方法;提出了一种基于网络辅助尔曼滤波状态估计的无标定视觉伺服方法,提高伺服系统的鲁棒性。同时,立足机器人发展前沿,建立了多模特征深度学习抓取系统,在无结构环境下实现了机器人智能抓取与定位。 已发表的与项目相关的主要论文有: [1] 仲训杲,徐敏,仲训昱,彭侠夫.基于多模特征深度学习的机器人抓取判别方法.自动化学报,2016,7(42), pp:1022-1029. (EI) [2] Xungao Zhong, Xunyu Zhong and Xiafu Peng. Robots Visual Servo Control with Features Constraint Employing Kalman-Neural-Network Filtering Scheme. Neurocomputing, 2015, 151(3), pp:268-277 (SCI)  [3] Xungao Zhong, Xunyu Zhong and Xiafu Peng. Robust Kalman FilteringCooperated Elman Neural Network Learning forVision-Sensing-Based RoboticManipulation with Global Stability. Sensors, 2013, 10(13), pp:13464-13486. (SCI) [4] Xungao Zhong, Xiafu Peng, Xunyu Zhongand Lixiong Lin. Dynamic Jacobian Identification Based on State-Space for Robot Manipulation. Applied Mechanics andMaterials, vols. 475-476 (2014)pp: 675-679.(EI) [5] Xungao Zhong, Xiafu Peng, Xunyu Zhong and Xueren Dong. Multi-Channel with RBF Neural Network Aggregation Based on Disparity Space for Color Image Stereo Matching. IEEE 5th International Conference on Advanced Computational Intelligence (ICACI), 10(2012) PP:620-625. (EI) [6]XUNGAO ZHONG, XIAFU PENG, XUNYU ZHONG. NEURAL-BAYESIAN FILTERING BASED ON MONTE CARLO RESAMPLING FOR VISUAL ROBUST TRACKING. Journal of Theoretical and Applied Information Technology, 2013, 2(50), pp: 490-496. [7] Xungao Zhong, Xiafu Peng and Xunyu Zhong. Severe-Dynamic Tracking Problems Based on Lower Particles Resampling. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2014, 12(6), pp:4731-4739. [8] Xunyu Zhong, Xungao Zhong and Xiafu Peng. Velocity-Change-Space-based Dynamic Motion Planning for Mobile Robots Navigation. Neurocomputing. 2014, 143(11), pp:153-163. (SCI) [9] Xunyu Zhong, Xungao Zhong, Xiafu Peng. VCS-based motion planning for distributed mobile robots: collision avoidance and formation. Soft Computing,2016,5(20), pp: 1897-1908. (SCI) [10] 仲训杲,徐敏, 仲训昱, 彭侠夫. 基于雅可比预测的机器人无模型视觉伺服定位控制, 控制与决策, 已在线发表, 2018. [11] 仲训杲,徐敏, 仲训昱, 彭侠夫. 基于图像的机器人非标定视觉反馈控制全局定位方法, 厦门大学学报(自然科学版), 已录用, 2018. 三、应用技术成果 (一)基于多模特征深度学习的机器人抓取判别 研究了多模特征深度学习及其在机器人智能抓取判别中的应用,该方法针对智能机器人抓取判别问题, 研究多模特征深度学习与融合方法. 该方法将测试特征分布偏离训练特征视为一类噪化, 引入带稀疏约束的降噪自动编码 (Denoising auto-encoding, DAE), 实现网络权值学习; 并以叠层融合策略, 获取初始多模特征的深层抽象表达, 两种手段相结合旨在提高深度网络的鲁棒性和抓取判别精确性. 实验采用深度摄像机与 6 自由度工业机器人组建测试平台, 对不同类别目标进行在线对比实验. 结果表明, 设计的多模特征深度学习依据人的抓取习惯, 实现最优抓取判别, 并且机器人成功实施抓取定位, 研究方法对新目标具备良好的抓取判别能力. (二)无标定视觉伺服解决方案及其机器人操作应用 研究了无标定视觉伺服方法及其在机械臂任务操作中的应用。首先提出视觉伺服目标:假设机器人或者摄像节的模型参数未知或者部分未知,视觉伺服的目标是使用摄像节作为传感器,引导机械臂运动,使当前图像特征收敛到期望图像特征,从而完成定位或者跟踪的任务。 手眼协调关系描述。关节图像雅克比矩阵定量描述了机械臂关节变化引起图像特征变化,它是关节-图像映射的局部线性化矩阵。 建立图像雅克比的在线估计器。将关节图像雅克比矩阵的每一个元素作为辅助系统的状态,建立辅助系统的状态方程;摄像机提取到的图像特征作为测量值,建立辅助系统的观测方程。根据Kalman滤波器理论,我们设计了对关节图像雅克比的在线实时估计算法。 构建基于图像矩的目标函数。为了避免传统的基于点特征的缺陷,例如点特征的标记、提取与匹配过程复杂且通用性较差问题。构建基于图像矩的图像特征向量完成视觉伺服任务,来提高视觉伺服系统的稳定性和可靠性。 四、合作企业 厦门万久科技股份有限公司是一家集销售、软件研发、技术服务、加工技术整合为一体的高新技术企业。目前公司的经营范围涉及CNC软件开发及数控系统销售、CNC控制零件销售及专业维修;工艺优化、机台升级与技术改造、工程配电与软件优化、专用机控制系统开发、多轴机的设计与开发、机台精度检测与校正优化服务等。公司是国际知名生产制造企业——富士康的产品供应商和技术服务商。    
厦门大学 2021-04-11
铌酸钾钠-锆钛酸铋钠系无铅压电陶瓷
本发明属于钙钛矿结构环境协调性压电陶瓷领域,特别涉及一种铌酸钾钠-锆钛酸铋钠系无铅压电陶瓷,该无铅压电陶瓷由通式(1-x)(KuNav)NbO3-xBi0.5Na0.5Zr1-yTiyO3表示,式中,0<x≤0.05, ?0≤y≤0.3,0.40≤u≤0.55,0.45≤v≤0.60,且u+?v=1。本发明提供的无铅压电陶瓷具有较高的压电性能,所用原料价格低廉,节约成本,有利于促进实用化进程,在工业生产中应用。
四川大学 2021-04-11
组织工程异种无支架生物瓣的研制及实验研究
生物瓣膜应用于临床已经有数十年,但同种瓣膜来源有限。异种瓣膜是理想的代替 品,但多年临床应用暴露了其在体内的易衰退性,从而限制了它的广泛应用。 本研究采用自行研制的异种(猪)无支架主动脉瓣作为骨架,应用组织工程学方法 将动物内皮细胞种植其上,形成具有细胞活性的异种生物瓣膜。进而进行动物体内植入 实验,实验组和对照组各六只绵羊,六月龄,分别植入组织工程异种无支架生物瓣膜和 非组织工程瓣膜,于术后 1、2、3 月超声观测植入瓣膜的功能情况,三个月后将瓣膜取 下,进行扫描电镜、同位素 H-腺嘧啶脱氧核苷吸收率、病理、功能检测,比较两种方法 处理的瓣膜在结构、机械特性及细胞存活情况的差异。 研究结果表明:猪的主动脉瓣膜作为心脏瓣膜支架来源是一种可靠的,结构合理的 替代品。戊二醛处理的异种瓣膜经左旋谷氨酸处理后,能成功的减除戊二醛的细胞毒性, 并能成功种植内皮细胞。种植在瓣膜上的内皮细胞能减轻免疫反应,防止在瓣膜上的血 栓形成,减少钙盐在瓣膜上的沉积,减少瓣膜的钙化,从而可延缓瓣膜衰退。组织工程 瓣膜具有非组织瓣膜不可比拟的耐久性。该研究制作了一种新型的抗衰退的组织工程异 种无支架生物瓣膜,并通过动物实验为进一步研究及临床应用奠定基础,具有重要的应 用价值。经专家讨论认为该研究达到国内领先水平。
同济大学 2021-04-13
首页 上一页 1 2
  • ...
  • 77 78 79
  • ...
  • 123 124 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1