高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
多视角桌面式三维显示装置
本发明公开了一种多视角桌面式三维显示装置。它包括对称分布的双投影机阵列、双纵向散射屏及桌面结构,其中第一投影机阵列放置于第一纵向散射屏一侧,第二投影机阵列放置于第二纵向散射屏一侧,桌面形式可以是回字形桌面或是中部开口L形桌面,双纵向散射屏嵌入桌面结构并设置成V形、直角形、梯形或弧形,双投影机阵列通过对应的散射屏向桌面中心投影图像。本发明的优点是可以产生高图像分辨率、高视角分辨率,并且在桌面两侧或一侧很大视场范围内都能观察到细腻的横向视差的三维图像。嵌入桌面的结构可以实现三维图像的悬浮效果。相对于单个裸眼立体显示器,多投影设置可以实现三维图像的拼接,大大增加三维图像的空间尺度。
浙江大学 2021-04-11
新型有机复合结构的电致发光平板显示器
本项目在申请了国际国内专利的基础上,大大提高了器件之发光效率、延长其使用寿命。主要技术内容是把无机/有机等多种材料成膜于两个电极之间做成发光器件,即经过步骤: 1. ITO 光刻 2. 基片处理 3. 用物理或化学方法制备无机纳米薄层到基片上 4. 然后将有机材料通过真空镀膜或旋甩涂敷成膜 5. 最后一层是镀金属电极 6. 封装引线等,最后配上驱动电路就制成了一个 OLED 电致发光屏 以上每一步骤,我们都有自己的独到之处,首先从器件的结构上看我们已经避开了美国和日本的专利。这为本项目的开发扫清了障碍。其次,在许多工艺上,我们简化了操作步骤,为其商品化打下了良好的基础。 用这一专利技术可生产出一系列自发光平板显示产品,且不产生电磁幅射,其优越的“性能价格比”使其不仅能打入传统自发光平板显示器市场,而且以其高分辨率的优势,还能进一步挑战目前被彩管(CRT)和液晶(LCD)垄断的显示器市场。产品的价格优势主要有两点:1、使用成熟的常规镀膜技术,步骤少、效率高;2、密封技术低、易操作。 本成果属国内领先水平,尽管日本的先锋公司已有车用显示器件问世;但是,目前国内该领域没有一家公司能生产该产品。 成果适合于手机、仪表显示、HDTV 或“壁挂式彩电”的应用,使全彩色成为可能。 与市面上最多的阴极射线管显示器相比,使用平板显示器基本上不产生电磁幅射,且与纯无机电致发光显示技术相比具色彩鲜艳、驱动电压低、价格低、使用范围宽、尺寸范围大等明显优势,而该技术在成本、性能及尺寸范围等方面又较液晶显示及等到离子体显示具有显著的优势。可采取股份制,在中国注册,在中国和香港上市。
北京交通大学 2021-02-01
平板显示用上转换光扩散微球及其制备方法
本发明公开一种平板显示用上转换光扩散微球及其制备方法,该光扩散微球为多壳层结构,微观上表现为“三明治”结构,最内层为铒镁双金属复合氧化物Er2O3?MgO微球,其平均直径为2~4μm,中间层为多孔g?C3N4,层厚为100~200nm,最外层为聚硅氧烷缩聚物,层厚为400~600nm;该光扩散微球是通过先在Er2O3?MgO微球上原位生长一层多孔g?C3N4制得多孔g?C3N4/Er2O3?MgO复合微球,再在该复合微球上原位水解缩聚硅氧烷单体制得,具有上转换发光现象,在980nm激光器激发下呈现绿光;由其紫外光固化制备的光扩散膜具有较佳的光扩散效果,光扩散膜的可见光透过率为90%~95%、雾度为80%~88%,同时具有上转换发光性能、良好的机械性能、耐老化性能和阻燃特性,实现了光扩散膜的多功能化,具有广阔的应用前景。
东南大学 2021-04-11
一种实现多屏显示的方法及系统
本发明涉及多屏显示领域,提供了一种实现多屏显示的方法, 包括 S1 远端触控设备获取屏幕内容并向显示控制中心发送屏幕内容 和指定显示设备编号的指令;S2 显示控制中心接收屏幕内容,并根据 指令将所述屏幕内容输出到编号对应的显示设备上实现多屏显示。本 发明中每个显示设备的显示内容可以一致也可以不一致,具体为远端 触控设备将显示内容发送到显示设备控制中心,显示设备控制中心将 显示信息发送到显示设备进行显示,显示设备控制中
华中科技大学 2021-01-12
新型有机复合结构的电致发光平板显示器
本项目在申请了国际国内专利的基础上,大大提高了器件之发光效率、延长其使用寿命。主要技术内容是把无机/有机等多种材料成膜于两个电极之间做成发光器件,即经过步骤: 1. ITO光刻 2. 基片处理 3. 用物理或化学方法制备无机纳米薄层到基片上 4. 然后将有机材料通过真空镀膜或旋甩涂敷成膜 5. 最后一层是镀金属电极 6. 封装引线等,最后配上驱动电路就制成了一个OLED电致发光屏 以上每一步骤,我们都有自己的独到之处,首先从器件的结构上看我们已经避开了美国和日本的专利。这为本项目的开发扫清了障碍。其次,在许多工艺上,我们简化了操作步骤,为其商品化打下了良好的基础。 用这一专利技术可生产出一系列自发光平板显示产品,且不产生电磁幅射,其优越的“性能价格比”使其不仅能打入传统自发光平板显示器市场,而且以其高分辨率的优势,还能进一步挑战目前被彩管(CRT)和液晶(LCD)垄断的显示器市场。产品的价格优势主要有两点:1、使用成熟的常规镀膜技术,步骤少、效率高;2、密封技术低、易操作。 第一期产品及技术指标:以绿光单色显示为例120cd/m2    (1) 6.4×6.4cm2, 128行/128列,亮度120cd/m2,功耗5 W    (2) 6.4×6.4cm2, 192行/192列,亮度120cd/m2,功耗6 W    (3) 7.6×10.2 cm2,240行/320列,亮度120cd/m2,功耗10 W 本成果属国内领先水平,尽管日本的先锋公司已有车用显示器件问世;但是,目前国内该领域没有一家公司能生产该产品。 成果适合于手机、仪表显示、HDTV或“壁挂式彩电”的应用,使全彩色成为可能。 与市面上最多的阴极射线管显示器相比,使用平板显示器基本上不产生电磁幅射,且与纯无机电致发光显示技术相比具色彩鲜艳、驱动电压低、价格低、使用范围宽、尺寸范围大等明显优势,而该技术在成本、性能及尺寸范围等方面又较液晶显示及等到离子体显示具有显著的优势。可采取股份制,在中国注册,在中国和香港上市。
北京交通大学 2021-04-13
一种基于脑电波控制的文字显示风扇
本实用新型涉及一种基于脑电波控制的文字显示风扇,脑电波采集模块、脑电波接收解析模块、文字显示风扇模块,所述脑电波接收解析模块分别连接脑电波采集模块和文字显示风扇模块,所述脑电波采集模块采集脑电波信号,所述脑电波接收解析模块无线接收所述脑电波信号产生脑电波控制指令,所述风扇模块根据脑电波控制指令进行转动。本实用新型通过该脑电波采集设备采集用户脑电波,利用蓝牙传输到脑电波接收解析模块,在核心处理器中生成控制指令实现对POV风扇模块的控制。进一步讲,本实用新型可以让用户通过注意力或者放松度达到某一阈值时控制风扇转动,风扇上显示出设定的文字。
浙江大学 2021-04-13
一种与或图的层次化显示方法
本发明公开了一种与或图的层次化显示方法,包括:(1)创建与 或图的起点和终点;(2)读入数据文件,根据四元组数据文件构建与或 图中所有的模型节点和有向线段,形成与或图的内部模型; (3)初始化, 将节点数据对象的搜索标志设置为未搜索;(4)对与或图模型进行宽度 优先搜索并显示,从起点或根节点开始,一层一层向外搜索并显示每 个与或图节点;(5)扩展处理,对静态关系图进行扩展处理,使之能动 态显示与或图的所有节点。本发明方法可以用计算机系统中常用的树 窗口来显示复杂多方案的与或图,通过增加虚节点使复杂与
华中科技大学 2021-04-14
一种有向无圈图的层次化显示方法
本发明公开了一种有向无圈图的层次化显示方法,包括:(1)创 建有向无圈图的起点和终点;(2)读入数据文件,根据三元组数据文件 构建有向无圈图中所有的模型节点和有向线段,形成有向无圈图的内 部模型;(3)初始化,将节点数据对象的搜索标志设置为未搜索;(4)对 有向无圈图模型进行宽度优先搜索并显示;(5)扩展处理,对静态关系 图进行扩展处理,使之能动态显示有向无圈图所有节点,即显示所有 的树节点的父节点和子节点。本发明所提出的方法可以用计算机系统 中常用的树窗口来显示复杂的二维的有向无圈图,不仅降低了计
华中科技大学 2021-04-14
超高分辨率图像增强与显示芯片
Ø  成果简介:超分辨率图像重建技术是近年来发展迅速的图像处理新技术,其目的是超越成像传感器、成像和信道的分辨极限,利用所获低分辨率图像,实现高分辨率图像的重建。超高分辨率图像增强与显示芯片项目利用超分辨率图像实时处理技术,实现从一幅或多幅低分辨率视频图像处理获得高分辨率图像,在图像被放大的同时增强图像更多的细节,提高图像的清晰度和分辨率,实现摄像传感器的低分辨率与显示器高分辨率之间的匹配,解决目前图像获取与显示分辨率不匹配的瓶颈问题,在现有图像获取技术的基础上提高显示器的画面质
北京理工大学 2021-04-14
裸眼3D空气悬浮光场显示系统
自由物理空间中实现空气悬浮3D显示一直是人们的梦想,曾无 数次出现在科幻片中,高质量的3D空气悬浮成像是3D显示技术实现 的难点也是科学家孜孜以求的目标。市场现有的空气成像技术方 案,均有亮度低、分辨率低、尺寸小、离屏距离小、观看眩晕等问 题,不能提供逼真舒适的视觉体验。 班度科技通过创造性地提出“空间光场积分”原理,模拟真实3D 场景的漫散射光场分布方式,控制携带信息的光在空间交汇融合形 成实像散射光分布,利用逆向光线追迹的方法积分计算得到光学模 组面型分布,进而完成光线在自由空间中的重聚焦,突破了离屏深 度、观看视角、悬浮图像的空间分辨率等“卡脖子”技术瓶颈。可实 现直接和悬浮在空气中的3D影像进行交互,可将3D场景直接推送到 空中,实现多层次空间的构建及呈现,提高观看者的认知和分析能 力,并带来前所未有极富冲击力的视觉体验。同时,这种成像方式 由于打通了虚拟与真实场域的界限实现了完整融合,符合人的认知 习惯的平滑过渡,更容易被受众接受并由此产生自发交互行为,带 来全新的交互方式。
班度科技(深圳)有限公司 2022-06-14
首页 上一页 1 2
  • ...
  • 9 10 11
  • ...
  • 208 209 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1