高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于表情分析的抑郁程度自动评估系统、夜间车辆检测识别系统
CN105279380B 一种基于表情分析的抑郁程度自动评估系统CN201310089195 一种基于车灯识别的夜间车辆检测方法及系统。
东南大学 2021-04-11
一种基于显著图的多标签图像识别系统
本发明提供一种基于显著图的多标签图像识别系统,包括裁剪图像的图像预处理模块,由此得到特征图的特征提取模块,根据特征图得到置信度分数以及分类权重的分类模块,通过训练控制模块控制训练模块对置信度分数以及特征图处理得到损失函数对特征提取模块以及分类模块更新,最终识别控制模块将自然场景图像经过图像预处理模块、更新得到的特征提取模块以及分类模块得到置信度分数通过判断出自然场景图像标签。因此本实施例提供的多标签图像识别系统根据多标签分类损失函数以及多标签分布损失函数迭代能够在多标签图像识别过程中减少复杂背景和物体形变的干扰,避免受到遮挡、光照、视点等的干扰并提高多标签图像识别的准确率。
复旦大学 2021-01-12
汽车形象店建设及终端体验(EI)视觉识别系统规范设计
北京工业大学 2021-04-14
一种基于忆阻器的图像识别系统及方法
本发明公开了一种基于忆阻器的图像识别系统及方法。所述系 统包括图像信号提取模块、多个基于忆阻器的神经网络模块和识别模 块;所述识别模块其输入端与多个神经网络模块的输出端相连;每个 神经网络模块的输出端与识别模块的输入端相连,其输入端与信号提 取模块的输出端相连。所述方法包括以下步骤:(1)获取待识别灰度 图像的特征向量并输入各神经网络模型;(2)各神经网络模型根据其 图像模型对所述特征向量分别进行打分并进行识别;(3
华中科技大学 2021-04-14
基于配准和深度学习的接触网鸟巢检测与识别系统
已有样品/n1)主要技术特点: 该成果的特点是针对高速铁路巡检车捕获的接触网服役状态的高清 图像,利用关键部位检测与配准方法,自动检测和定位接触网关键部位, 然后,利用深度特征学习方法,自动检测和识别接触网关键部位鸟巢危 害。与现有的接触网鸟巢人工巡视相比,具有检测和识别速度快、精度 高等优点。 2)主要技术指标: (1)接触网鸟巢检测精度率:漏检率为 0,虚警率<5% (2)接触网鸟巢检测的速度:>10fps 3)应用范围: 可用于高速铁路巡检车接触网鸟巢危害的检测与定位,提高处理的
华中科技大学 2021-01-12
调谐型电磁超材料关键技术及在射频识别系统中的应用
本项目突破了电磁超材料存在的不可调谐、带宽窄、设计可靠性低等关键技术,开发出可调谐型射频微波电磁材料结构设计、电磁特性仿真与控制、材料制造与性能测试等工艺与方法,研制出系列射频/微波频段调谐型电磁超材料、基于超材料的射频滤波器/双工器/三工器/天线、超高频射频识别标签/读写器等产品,进行了规模化示范应用与验证,其性能指标达到市场同类产品国内领先水平;获得授权发明专利32项、实用新型专利27项,发表论文150余篇(其中SCI论文60余篇)。
电子科技大学 2021-04-14
智能物料跟踪与识别
(1)开发工业字符自动识别算法,有效对旋转、变形、缺失字符进行准确识别,实现自动物流跟踪;(2)支持面喷、侧喷、钢印和手写字符的识别;(3)支持自定义字库,语法,多点同步识别;(4)识别算法对喷印质量没有要求,识别准确率为:对人工能进行识别的字符整体识别正确率为 99%。
北京科技大学 2021-04-13
页岩薄片智能识别平台
一、项目进展 创意计划阶段 二、负责人及成员 姓名 学院/所学专业 入学/毕业时间 学号 高志豪 计算机学院/物联网工程 2017年/2021年 201731064410 林钟煇 计算机学院/物联网工程 2018年/2022年 201831064119 阳旭菻 计算机学院/计算机科学与技术 2018年/2022年 201831062525 李沛键 计算机学院/物联网工程 2018年/2022年 201831064115 三、指导教师 姓名 学院/所学专业 职务/职称 研究方向 陈雁 计算机科学学院 副教授 人工智能、复杂网络、能源与人工智能交叉领域 刘忠慧 计算机科学学院 副教授 机器学习、人工智能、形式概念分析 四、项目简介 美国海相页岩气藏的成功勘探开发,展现了页岩气的巨大潜力和发展空间,同时也极大地促进了页岩储层微观结构表征分析技术的发展,通过页岩岩心薄片观察底层形态、确定底层数据,是页岩气勘探开采中的重要一环。页岩储层的孔隙作为页岩组分的一个重要部分,其结构特征直接影响着储层剩余储量的剩余油的分布,因此,对页岩薄片孔隙的形状和类型进行研究是十分必要的。但在目前,页岩薄片只能靠人工鉴定,这种方法工作量大,效率低,且主观性强,误差较大。深度学习是近年发展起来的具有多层次特征抽象归纳与知识发现能力的机器学习算法,目前已经被广泛应用到了语音识别、计算机视觉、自然语言处理等众多领域。在地质和岩石物理领域也有了初步的应用,深度学习方法在地质数据的特征提取及预测识别方面有着广阔的应用前景,本项目组将会开发页岩薄片智能平台,通过机器学习算法来学习专家知识,自动识别孔隙类型,这样就可以大大提高效率,节省人力。
西南石油大学 2023-07-20
智能停车的空车位识别
北京工业大学 2021-04-14
行人再识别以及智能计算
一、行人再识别研究研究背景:行人再识别(Person Re-Identification,简称 Re-ID)研究跨视域跨摄像头情况下对行人进行连续跟踪,是目前计算机视觉研究的热门方向,在智能安防领域有巨大的市场和广阔的发展前景。研究成果:基于特征级有监督背景消除的行人再识别方法、基于激活引导属性分类模型(AGAC)的行人再识别方法。二、面向智能终端的隐式身份认证不同用户的触摸智能手机的习惯具有独特性,不易被模仿。利用用户触摸智能手机的习惯作为生物识别符,“隐形地” 完成对用户身份的合法性认证。三、利用双通道建模的鬼影抑制算法研究背景:检测中的鬼影经常造成误检测,该算法可以抑制在检测时产生鬼影
北京交通大学 2023-05-08
首页 上一页 1 2 3 4 5 6
  • ...
  • 674 675 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1