高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
关于晶体表界面调控的“变异和遗传”生长机制的研究
研究团队创造性提出晶体表界面调控的“变异和遗传”生长机制,在国际上首次实现种类最全、尺寸最大的高指数晶面单晶铜箔库的制造。
北京大学 2021-04-11
有关微腔中的自发对称性破缺机制的研究
自发对称性破缺是指物理系统保持原本的对称性,而其却选择了另一种不具备对称性的状态,它是很多相变过程和非互易系统的基本原理,例如,弱相互作用的宇称不守恒和希格斯机制均是自发对称性破缺的著名例子。回音壁模式光学微腔由于其固有的旋转对称性,可以支持一对简并的沿顺时针和逆时针传播的行波模式;同时,它具有超高的品质因子和很小的模式体积,可以极大地增强光和物质的相互作用,是研究对称性物理和非线性光学的理想平台。研究团队利用光学克尔效应,使微腔中相向传播、相等强度的行波光场之间发生交叉相位调制,从而产生了非线性耦合。因此,通过控制输入光强可以将这对行波场之间的等效耦合强度调制为零,使得系统中原本的对称状态不再稳定,自发地分裂为两个非对称的状态,实现了光场的自发对称性破缺。采用具有相同强度和偏振的双向输入光,来激发芯片上圆形微腔中的超高品质因子回音壁模式。当输入光功率很小时,系统状态保持原本的对称性,表现为顺时针和逆时针行波场的强度相等;随着输入光功率的增强,由交叉克尔效应引起的非线性耦合强度随之变大,当功率达到一定阈值(百微瓦量级)之后,系统会随机地进入一个顺时针倾向或逆时针倾向的状态,表现为自发对称性破缺。实验上,每个破缺状态中行波强度之比超过了20:1,实验数据与严格理论解析结果吻合。
北京大学 2021-04-11
怀进鹏:完善高校科技创新体制机制,加快构建职普融通、产教融合的职业教育体系
2月17日,北京市举行全市教育大会。北京市委书记尹力,教育部党组书记、部长怀进鹏出席大会并讲话。北京市委副书记、市长殷勇主持大会。北京市人大常委会主任李秀领、市政协主席魏小东出席大会。
教育部 2025-02-18
要素市场扭曲对产业技术创新的影响及其机制
浙江财经大学戴魁早教授编著的《要素市场扭曲对产业技术创新的影响及其机制》由《中国社会科学出版社》2018年9月出版,获2019年“浙江省第二十届哲学社会科学优秀成果奖”三等奖(基础理论研究优秀成果奖)。 该书是2018年度浙江省哲学社会科学规划后期资助课题(课题编号18HQZZ08)的最终成功,主要内容得到《经济研究》、《世界经济》、《数量经济技术经济研究》、《科学学研究》和《经济理论与经济管理》等国内权威刊物上五篇学术论文的支撑。该书指出,要素市场扭曲抑制了中国高技术产业研发资本投入增长,但却显著地促进了研发人力投入的提高,这种影响差异主要归因于研发资本和研发人力不同的流动性;当扭曲程度较高时,要素市场改善对产业创新效率的边际效应较小,而随着扭曲程度的持续下降,其对产业创新效率的边际效应越来越大;在技术创新绩效较低的地区,要素市场扭曲的抑制效应显著,而在技术创新绩效较高的地区,其抑制效果则不明显。在规模较大、外向度较高和技术密集度较低的企业中,要素市场扭曲对创新的抑制程度较低。该书为政府从要素市场扭曲视角提升高技术产业的技术创新能力提供了理论依据、经验证据和政策启示。
浙江财经大学 2021-04-30
激波驱动下密实填充颗粒的初始运动机制研究
脉冲气压抛撒技术在军事和民用领域都有广泛应用,如灭火剂喷射、爆炸抛撒等,具有重要的学术和应用价值。本项目以密实填充颗粒为研究对象,在激波管中进行加载实验,借助多种瞬态测量技术,研究密实填充颗粒在脉冲气压驱动下的初始运动机制。
中国人民警察大学 2021-05-03
报道驱动肿瘤发生的表观遗传调控新机制
癌基因cMyc是一个重要的转录因子,调控约15%的人类基因表达,在肿瘤细胞的增殖、凋亡以及代谢重编程等方面发挥重要作用。然而,目前尚不清楚,cMyc是否通过转录以外的机制,来广泛地调控基因的表达以及肿瘤的发生发展。中国科学技术大学的张华凤课题组、高平课题组联合军事医学科学院段小涛课题组的研究发现,cMyc能够促使琥珀酸脱氢复合酶(SDH complex)中的重要亚基SDHA乙酰化以及SDH复合酶失活,导致底物琥珀酸(succinate)的积累,进而上调组蛋白H3K4的三甲基化(H3K4Me3)水平以及基因的表达。该研究成果在线发表于Nature Metabolism期刊上。机制方面,发现cMyc通过泛素连接酶SKP2促进线粒体中SIRT3的蛋白降解,从而导致SDHA的乙酰化上升。通过质谱进一步鉴定出SDHA受调控的乙酰化位点K335,小鼠实验显示SDHA的K335位点乙酰化在cMyc诱导肿瘤过程中起重要作用。进一步分析临床病人弥散性大B细胞瘤(DLBCL)样本发现,高表达cMyc的DLBCLs中,SIRT3发挥着抑癌因子的功能,而K335位乙酰化的SDHA发挥着促进肿瘤的作用。这一发现揭示了cMyc驱动的肿瘤发生过程中SDHA乙酰化修饰发挥的重要病理学作用。SDHA被认为是抑癌蛋白,它的失活突变体与多种肿瘤,例如副神经结瘤、乳腺癌、肾癌等,有一定程度的联系。这项研究表明,至少在弥散性大B细胞淋巴瘤中,SDHA通过乙酰化失活而极大地促进了cMyc异常表达的肿瘤的进展。因此,靶向SDHA的乙酰化将可能为此类肿瘤的临床治疗提供潜在的策略和手段。论文链接:https://www.nature.com/articles/s42255-020-0179-8详细阅读:http://news.ustc.edu.cn/2020/0317/c15884a414798/page.htm
中国科学技术大学 2021-04-10
脑-脾神经环路控制抗体免疫应答的新机制
2020年4月29日,《自然》杂志在线发表了清华大学医学院、免疫学研究所祁海课题组、上海科技大学胡霁课题组、清华大学麦戈文脑科学研究所钟毅课题组的合作论文,题目是“受行为影响的脑活动调控体液免疫应答”(Brain control of humoral immune responses amenable to behavioural modulation)。通过小鼠模型,该研究发现了一条从大脑杏仁核和室旁核CRH神经元到脾内的神经通路——这条通路促进疫苗接种引起的抗体免疫应答,并可通过响应躯体行为刺激对免疫应答进行不同调控。据作者介绍,这是迄今发现的第一条解剖学明确、由神经信号传递而非内分泌激素介导的、中枢神经对适应性免疫应答进行调控的通路,它的发现为神经免疫学研究拓展出了一个新方向。“勤動”与增强免疫的中枢神经核团与环路首先,研究者开发了一种新型去除小鼠脾神经的手术,发现这种小鼠在疫苗接种后所能产生的浆细胞(抗体分泌细胞)数量有明显缺陷,暗示了脾神经冲动信号对B细胞应答有促进作用。通过药理学、遗传学实验,他们继而发现B细胞表达乙酰胆碱9受体对脾神经的这个促进作用不可或缺。通过体内细胞剔除实验,研究者发现在肾上腺素能的脾神经和需要感知乙酰胆碱的B细胞之间,最可能起到了“换元”作用的,是新近发现的可感受去甲肾上腺素而分泌乙酰胆碱的T细胞。进一步,作者通过伪狂犬病毒逆行追踪,发现脾神经与室旁核(PVN)、中央杏仁核(CeA)有连接。这两个区域的功能与应激、恐惧反应紧密相关,而两处共有的一类神经元是表达CRH(促肾上腺皮质激素释放激素)的神经元。CRH神经元是掌控垂体-肾上腺轴的上游神经元,其激活可导致肾上腺大量释放糖皮质激素,调整机体应激,抑制免疫系统活动。这个已知抑制免疫的内分泌功能,不能解释作者看到的免疫增强的现象。但会不会CRH神经元还可以直接操控脾神经,通过神经通路传导免疫增强的信号来促进浆细胞的产生呢?为检验这一假说,研究者通过光遗传学实验,发现刺激CeA/PVN的CRH神经元后几秒钟之内就会记录到脾神经的电信号明显加强,证明CeA/PVN与脾间的确有通路连接(图1)。进而,作者通过CRH神经元剔除、DREADD化学遗传学抑制及激活的方法,证明 CeA/PVN CRH神经元活性对应调控了脾内B细胞应答产生浆细胞的过程。图1 光遗传学实验证明CeA/PVN CRH 神经元与脾神经的连接自主神经活动可以受外界环境及行为的影响。那么,有没有行为可以刺激这条脑-脾神经轴从而增强免疫应答呢?作者通过监测小鼠在不同行为范式下 CeA/PVN 的 CRH 神经元活动发现,一个他们新开发的“孤立高台站立”(elevated platform standing,如图2和视频)行为可以同时激活这两个核团的CRH神经元。自主神经活动可以受外界环境及行为的影响。那么,有没有行为可以刺激这条脑-脾神经轴从而增强免疫应答呢?作者通过监测小鼠在不同行为范式下 CeA/PVN 的 CRH 神经元活动发现,一个他们新开发的“孤立高台站立”(elevated platform standing,如图2)行为可以同时激活这两个核团的CRH神经元。图2 孤立高台站立模式图更重要的是,抗原接种后第二周里,每天经历这个行为范式两次,小鼠抗原特异的抗体就可以增加约70%。这种行为增强抗体应答的效果,依赖于CRH神经元、依赖于脾神经、并且需要B细胞表达的乙酰胆碱受体。虽然高台站立可以看作是一种应激范式,但并非所有导致应激状态的行为都能增强免疫。作者测试了神经生物学研究中常用的捆绑模型,发现这一范式更强烈而持久激活PVN的CRH神经元,但抑制 CeA 的 CRH 神经元,致使机体持续产生高水平的糖皮质激素,对免疫应答产生了抑制作用。至此,研究者在这项研究里鉴定、证明了一条对适应性免疫具有增强功能的脑-脾神经轴,揭示了CRH神经元的双重免疫调节功能——经典已知的垂体-肾上腺神经内分泌免疫抑制作用和新发现的经神经环路直接作用于脾的免疫增强作用。神经免疫学方兴未艾,目前的主要方向包括:以CNS和外周神经为靶器官,研究组织固有的小胶质细胞和招募而至的免疫细胞在系统稳态与病变中的作用;研究中枢及外周神经与淋巴器官和屏障组织(肠上皮等)里固有免疫细胞(巨噬细胞、ILC等)的信号交互与功能互调等。刚刚发表的这一新工作,使研究者认识到淋巴细胞介导的适应性免疫应答也可以受到中枢-外周神经环路的直接调控,以及通过躯体行为正向调节免疫应答的一个生物学基础。针对最后一点,祁海特别指出,锻炼身体(躯体运动)可以增强“免疫力”,这个几乎所有人或多或少都接受的常识性结论,其背后的科学依据其实远不清楚。他认为,他们发现的脑-脾轴可能为此提供了一个环路方面的解释。我们适度锻炼,可能如同小鼠的EPS,恰到好处地刺激了CeA和PVN的CRH神经元,增进了浆细胞和抗感染抗体的生成。相反,频繁马拉松跑后人们易于感冒,可能是过度应激导致的免疫抑制超越了免疫增强效果。祁海猜测,未来通过神经免疫学的进一步研究,应该可能在特定神经元、神经环路水平定量描述、评价不同锻炼方式、不同躯体运动形式、乃至不同“冥想”“禅修”过程对免疫系统的影响,从而帮助我们为加强“免疫力”而正确选择锻炼或其他增进健康的方式提供更明确的科学依据。这也是题图“勤動”所表达的愿景。清华-北大生命科学联合中心2013级博士生张旭、清华生命学院2016级博士生雷博、上海科技大学2015级博士生袁媛、清华PTN项目2016级博士生张厉为本文的共同第一作者。该得到科技部和国家自然科学基金委科研基金的支持。祁海课题组还得到北京市科委、清华-北大生命科学联合中心、清华大学免疫学研究所、北京生物结构前沿研究中心、北京市慢性病免疫学研究重点实验室的支持。钟毅课题组得到清华麦戈文脑科学研究所的支持。另外,中国科学院武汉数学物理研究所徐福强课题组、清华大学药学院廖学斌课题组、首都医科大学孙文智课题组为本研究的顺利开展和完成作出了重要贡献。论文链接:https://www.nature.com/articles/s41586-020-2235-7
清华大学 2021-04-11
阐明了红树基因组水平的趋同进化机制
 红树植物是生长在海岸潮间带环境的木本植物,包含了不同分类类群的数十个物种,是研究适应性趋同进化的极佳对象。课题组选择了三个主要的红树植物类群共16种代表性的红树物种,进行了全基因组或转录组测序组装,在全基因组水平检测趋同进化。通过系统发育分析发现三个红树植物类群起源的时间十分接近,共同经历了历史上海平面的升降,并逐步适应潮间带环境。论文进一步发展了准确估计分子水平趋同进化的方法,以陆生植物为对照,通过检测趋同氨基酸替代的方法,成功收集到70多个在红树植物中趋同进化的基因。此外还发现红树植物更多的趋同进化发生在氨基酸组成和氨基酸替代模式的改变。相比于陆生植物,红树植物趋同地改变了9种氨基酸的使用频率,更多地发生了平常少见的氨基酸替代模式。这种氨基酸组成的趋同进化有助于红树植物适应高盐、动荡且营养贫瘠的海岸潮间带环境。这项研究通过合适的物种选取、大量的基因组数据和完备的对照组设置,首次真正在基因组水平上准确地检测出趋同氨基酸替代位点。
中山大学 2021-04-13
揭示YPS蛋白影响果蝇生殖干细胞发育的分子机制
该项研究中,研究团队首先发现 YPS 蛋白缺失的2周龄果蝇卵巢干细胞显现出发育延迟,增殖变慢的现象,提示该蛋白对于果蝇生殖干细胞的维持、增殖以及分化具有重要作用。由于YPS的人源同类蛋白YBX1与mRNA m5C甲基化酶NSUN2共定位于外泌体中,且YPS本身含有能够结合核酸的保守的cold-shock结构域,研究团队推测YPS可能通过结合含有甲基化的mRNA来行使功能。
南方科技大学 2021-04-14
基于社区在线学习系统的学习激励机制构建方法
本发明提供了一种基于社区的在线学习系统的学习激励机制,在以课程为社区的学习系统中,通过 对用户活动的综合评价,得出用户使用系统的情况;而用户的活动分为两部分:用户下载资源数和用户 回答问题数,这两者构成用户影响传播图,再结合用户好友关系和用户之间的间接影响带来的多阶传播, 得到用户影响传播矩阵,采用自己设计的类 PageRank 算法,计算用户的声誉值,作为在线学习系统中 用户的平时成绩,从而激励用户多参与课程社区的活动,来提高自己的声誉值。&
武汉大学 2021-04-14
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1