高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
中国汽车工程研究院股份有限公司
中国汽车工程研究院有限公司(原重庆汽车研究所)始建于1965年3月,系国家一类科研院所,现为中国通用技术(集团)控股有限责任公司(简称“中国通用技术集团”)的全资子公司。本院目前拥有初具规模的全资企业5个,控股子公司2个,员工总人数968人,专业技术人员520人,其中享受政府特殊津贴人员9人,部级青年专家1人、研究员级高级工程师55人、高级工程师94人、工程师168人,博士、硕士98人。经人事部批准本院设有、博士后科研工作站。本院总资产9.01亿元,固定资产2.1亿元,拥有各种设备、仪器1451台(套)。 中国汽车工程研究院股份有限公司(股票简称:中国汽研,股票代码:601965)始建于1965年3月,原名重庆重型汽车研究所,系国家一类科研院所。2001年,更名为重庆汽车研究所,同时转制为科技型企业。2003年,划归国务院国资委管理,2006年,与中国通用技术(集团)控股有限责任公司联合重组,成为其全资子企业。2007年,更名为中国汽车工程研究院,并整体改制为有限责任公司。2010年11月,整体变更设立为中国汽车工程研究院股份有限公司。2012年6月11日,中国汽研在上海证券交易所正式挂牌上市。公司注册资本:97,013.2367万元,法定代表人:李开国。2013年10月,中国汽研研发和测试新基地建成并投入使用。 中国汽研主要从事汽车领域技术服务业务和产业化制造业务。其中:技术服务业务包括汽车研发及咨询和汽车测试与评价业务;产业化制造业务包括专用汽车、轨道交通关键零部件、汽车燃气系统及其关键零部件制造业务。 中国汽研拥有国家机动车质量监督检验中心(重庆)、国家燃气汽车工程技术研究中心、汽车噪声振动和安全技术国家重点实验室、替代燃料汽车国家地方联合工程实验室,并设有博士后科 研工作站,是“国家高新技术企业”、“创新型企业”以及“国际科技合作基地”。 经过50多年的发展,中国汽研已拥有较强的汽车技术研发能力、一流的试验设备和较高的行业知名度,并建设成为我国汽车行业产品开发、试验研究、质量检测的重要基地及技术支撑机构。中国 汽研利用募集资金,按照“优先重点发展研究开发业务,大力积极发展测试评价业务,统筹稳健发展科技成果产业化业务”的发展思路,已建成汽车安全、汽车噪声振动、电磁兼容、汽车节能与 排放、电动汽车、替代燃料汽车、汽车整车、发动机、零部件等试验室和汽车工程研发中心,并努力建设成为我国汽车产业的科技创新平台和公共技术服务平台,发展成为国际一流、国内领先的 汽车工程技术应用服务商和高科技产品集成供应商,为我国汽车产业的持续健康发展发挥应有的技术支撑作用和科技引领作用。
中国汽车工程研究院股份有限公司 2022-03-01
中国汽车技术研究中心有限公司
中国汽车技术研究中心有限公司(简称“中汽中心”)成立于1985年,总部位于天津,是隶属于国务院国资委的中央企业,是在国内外汽车行业具有广泛影响力的综合性技术服务企业集团。   自成立以来,中汽中心始终以推动中国汽车产业健康持续发展为使命,坚持“独立、公正、第三方”的行业定位,艰苦奋斗、干事创业,为推动我国汽车产业发展和实现国有资产保值增值做出了贡献。   目前中汽中心共有职能部门9个、直属机构5个、全资子公司36家、控股公司9家,总资产143亿元,净资产107亿元,占地总面积8085亩,员工总数4953人。形成了以行业智库服务、汽车产品检测认证、共性及前瞻性技术研发为核心的覆盖汽车全产业链和全生命周期的技术服务能力,业务涵盖行业服务、标准业务、政策研究、检测试验、工程技术研发、认证业务、大数据、工程设计与总包、咨询业务、新能源、产业化和战略新兴业务等12大领域。除天津总部外,中汽中心在北京、上海、广州、武汉、昆明、常州、宁波、盐城、牙克石等地打造了多个区域中心,构建了覆盖我国大部分地区的服务网络。中汽中心还积极推动企业国际化发展,在德国慕尼黑、日本东京设立了子公司及常驻办事处。   中汽中心正按照高质量发展的要求,努力将自身打造成为世界一流综合性技术服务企业集团。
中国汽车技术研究中心有限公司 2022-03-01
核工业西南勘察设计研究院有限公司北京分公司
核工业西南勘察设计研究院有限公司北京分公司成立于2016年11月03日,其总部位于成都,是涵盖市政、公路、建筑、岩土等专业,集规划、咨询、勘察、设计、施工于一体的大型综合性国有控股工程企业。公司非常注重人才的培养与发展,目前拥有众多中高级技术人员、各类注册人员,近年来获得多项国家级、省部级优秀工程奖。
核工业西南勘察设计研究院有限公司北京分公司 2022-02-25
西安交大全球健康研究院与合作者最新研究显示:我国成人糖尿病患病率仍在上升 亟需加大防控力度
如果未来可防可控的危险因素不能得到有效控制,超重肥胖率上升不能放缓,糖尿病疾病负担仍将加重,将影响“健康中国2030行动目标”的实现。
西安交通大学 2021-12-30
东南大学苏州研究院工业CT系统采购公开招标公告
东南大学苏州研究院工业CT系统采购招标项目的潜在投标人应在南京市建邺区嘉陵江东街8号综合体B3栋一单元16层获取招标文件,并于2022年06月23日09点30分(北京时间)前递交投标文件。
东南大学 2022-05-31
小转角双层石墨烯体系的结构和新奇量子物态研究进展
层间转角在层状堆垛的二维材料体系中提供了一个全新的自由度来调控其结构与性质。近几年,相关方面的研究引起了广泛的关注。早在2012年,何林课题组就开始关注转角对双层石墨烯结构和电学性质的影响,测量了不同转角双层石墨烯的两个范霍夫峰的峰间距能量与转角大小的关系[1],并预言该体系中的准粒子具有可调控的手征性[2],研究了应变结构在该体系产生的赝磁场和赝朗道能级[3]。2015年,何林团队发现双层转角石墨烯体系费米速度随角度减小而迅速下降,证明在转角为1.1度(第一魔转角)附近时费米速度降为零[4],并于2017年,在转角接近魔转角的双层石墨烯体系观察到强电子-电子相互作用[5]。2018年初MIT的Pablo课题组在魔角双层石墨烯观察到电子-电子相互作用导致的关联绝缘体态和超导态,魔角双层石墨烯物性研究迅速成为过去两年凝聚态物理研究的最大热点。 近期,何林课题组发展了一套方法,能够可控地制备利于扫描隧道显微镜系统(STM)研究的双层转角石墨烯,并利用STM研究了小角度双层石墨烯的性质,深入探索该体系由于电子-电子相互作用导致的平带简并度解除和新奇强关联量子物态的关联。例如,何林课题组与合作者发现当小转角体系的平带被部分填充时,电子-电子相互作用会解除平带的谷赝自旋简并度,在体系中产生很大的轨道磁矩(每个莫尔约10μ_B),由于轨道磁矩和磁场的耦合,谷极化态的劈裂能量会随着外加磁场线性增大[6]。同样的结果也在应变引起的平带中观察到了,当双层石墨烯的转角接近魔角时,体系中微小的应变结构可以使两个范霍夫峰之间出现一个新的零能量平带(赝朗道能级),何林课题组与合作者发现电子-电子相互作用会解除赝朗道能级的谷赝自旋简并度,产生轨道磁性态[7]。这些结果表明小转角石墨烯体系是研究二维轨道磁性态和量子反常霍尔效应的理想平台。在角度大于魔角的小转角双层石墨烯中,何林课题组与合作者证明电子-电子相互作用依然会起重要作用,并有可能产生完全不同于魔角双层石墨烯的新奇强关联量子物态。例如在1.49度的样品中,他们证明电子-电子相互作用解除了体系平带中的自旋和谷赝自旋的简并度,产生了一种全新的自旋和谷极化的金属态[8],这一结果进一步拓宽了转角体系新奇强关联量子物态的研究范围。 除了电学性质受层间转角的调制,在双层转角石墨烯体系,由于层间堆垛能与层内晶格畸变引起的应变能的竞争,其原子结构也会随着角度发生改变。最近,何林课题组系统研究了双层转角石墨烯结构随着角度的演化,发现当转角大于魔角时,体系可以看作两个独立的刚性石墨烯层发生扭转,层内晶格畸变几乎可以忽略(定义为非重构结构);当转角小于魔角时,由于莫尔条纹周期较大,层间堆垛能占主导,从而引起晶格畸变产生堆垛的畴界(domain wall)网格(定义为重构结构)。这种畴界的两边都是Bernal堆垛的双层石墨烯(分别为AB堆垛和BA堆垛),能传输谷极化的电流(图一)。我们利用STM证明非重构和重构的两种结构在魔角附近都能稳定存在。进一步,我们发现利用STM针尖脉冲可对魔角双层石墨烯的非重构和重构结构进行切换,从而开关其二维导电拓扑网格。同时,我们发现在强关联效应中起到重要作用的魔角双层石墨烯平带的带宽也能在这一过程中被调控[9]。相关成果近日刊发在物理学期刊《Physical Review Letters》上。何林教授课题组博士生刘亦文为第一作者,美国洛斯阿拉莫斯国家实验室的苏赢博士为文章的共同第一作者,何林教授为通讯作者。
北京师范大学 2021-02-01
东南大学科研团队在热电转换研究领域取得新进展
近日,东南大学物理学院倪振华教授和吕俊鹏教授课题组与新加坡科技局材料工程研究院吴靖研究员合作,发现在基于二维Bi2O2Se的场效应晶体管中施加门电压可以调控极化光学声子散射到压电散射的转变,实现了塞贝克系数与电导率的去耦合,达到了宽温度范围的高热电功率因子。 基于塞贝克效应的热电材料可以实现热能和电能的直接转换,在绿色清洁能源和低温制冷等领域有着十分重要的应用,如何提高热电材料转化效率一直是该领域研究的核心问题。热电参数之间的强耦合使得提高材料的热电性能具有挑战性。长期以来,由于载流子散射机制的复杂性,在调控载流子散射机制方面十分困难,因此常常忽略了载流子迁移率在独立增强热电性能(不牺牲塞贝克系数的情况下提高电导率)方面的作用。 不同于目前广泛研究的石墨烯、过渡金属硫化物、黑磷等二维材料,二维Bi2O2Se的低声子群速度和强声子非谐散射使其具有极低的热导率(~0.92 W/mK APL 115, 193103 (2019)),同时兼具的高电子迁移率和良好的环境稳定性使得其在热电以及能源转化领域有着巨大的潜力。基于二维Bi2O2Se场效应晶体管的热电输运,二维Bi2O2Se载流子迁移率在高温下由极化光学声子散射主导,在低温下由压电散射主导。当压电散射主导时,其迁移率显著提高。同时电导率的急剧上升并没有导致塞贝克系数的明显下降,表明散射机制的调控可以实现电导率和塞贝克系数的去耦合。这与之前通过调控载流子浓度来平衡电导率和塞贝克系数的策略完全不同。同时,这种散射机制的转变温度具有高度的门电压可调性,通过施加一定大小的门电压,可以显著提高极化光学声子散射到压电散射的转变温度。热电功率因子与迁移率在两个数量级的调制上展现出近似线性的相关性,最终实现宽温度范围(80-200K)的高热电功率因子(>400mW-1m-1K-2)。 该工作发现了通过门电压调控二维Bi2O2Se的散射机制可以有效的调节其热电性能,证明了散射机制的调控可以很好的实现热电参数之间的去耦合。高栅极可调性允许对散射机制进行精细的控制,从而揭示更深入的物理机制。对于探索低维材料应用于低温制冷和物联网自供电领域具有深远意义。
东南大学 2021-02-01
超特高压电网继电保护关键技术研究及应用
研究背景 超特高压电网具有电压等级高,输电容量大,输送距离远,覆盖范围广等特点,电网故障带来的系统安全影响更加严重。超特高压系统故障后的暂态特征及继电保护与控制装置的配合关系复杂,超特高压工程带来的继电保护新问题对传统继电保护配置提出了更高的标准和要求。因此研究超特高压电网继电保护新原理是当前超/特高压电网建设的重大课题。 主要成果 构建了超特高压系统实时数字仿真系统(RTDS)模型,揭示了超特高压系统故障机理及其电磁暂态特征。在超特高压继电保护新原理方面取得了多项重大的科研成果,如:提出dR/dt振荡闭锁原理,解决了电力系统振荡过程中距离保护容易误动的难题;提出“按相补偿”方法,改革了接地阻抗继电器的接线方式,有利于阻抗选相和距离保护的快速动作;提出“虚拟电流”的构成方法,解决了母线保护的故障判别及TA饱和、断线的判别难题;提出基于电压回路方程的变压器保护新原理,解决了励磁涌流引起差动保护误动的难题等。研究开发的微机保护、继电保护测试仿真系统、变电站自动化系统、发变组保护系统及故障录波装置等均处于国际领先水平。 学术影响 研究团队在20世纪80年代初研发了我国第一台微机继电机保护装置,而后研发的分层、分布式变电站综合自动化系统率先在西电东送工程的首个500kV变电站投入应用;1000kV线路保护及变电站自动化系统也成功投运;依托研发技术创建的四方公司已成为我国二次设备三大制造商之一,年产值超过20亿元。相关研究成果已成功应用于实际电网中,先后2次2国家级科技进步二等奖,取得了重大经济和社会效益。
华北电力大学 2021-02-01
甲基环戊二烯三羰基锰(MMT)的合成新工艺研究
甲基环戊二烯三羰基(简称MMT)为一种无铅汽油抗爆剂,具有改善汽油辛烷值、提高燃料燃烧效率、减少汽车尾气排放等优点。该项目采用改进高温高压两步法制备MMT。采用该生产工艺使甲基环戊二烯与有机锰的转化率均超过89%,成本的下降有利于MMT工业化的实施。其工艺和产品质量达到国内领先国际先进水平。 2006年,MMT汽油抗爆剂项目得到国家发展和改革委员会高技术产业发展项目的支持,资助经费达800万元,江西省科技厅重大专项资助100元,该项目已经累计得到各类项目资金资助达1500余万元。目前,我校昌北精细化工基地已具有较大规模,成为我省高校产学研有机结合的典型示范基地。
江西师范大学 2021-05-05
服务行政理念下的电影业监管法律制度研究
本书对电影业监管的研究也是沿着这一脉络展开的.本书由绪言,正文和结语三部分构成,其中,正文分为六章,第一章是电影业监管的必要性和正当性分析,第二章是电影业监管主体分析,第三章和第四章分别论述了电影产业和电影公共服务两大领域的监管问题,第五章是对电影业监管的法律监督机制的分析.
江苏海洋大学 2021-05-06
首页 上一页 1 2
  • ...
  • 115 116 117
  • ...
  • 193 194 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1