高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
数控精密定位柔性操作机械手
成果与项目的背景及主要用途: 该技术采用数控气动闭环控制回路、机械手可以上下插拔,在 XYZ 三个方向有力触觉,可以感受作用力,如果力大,机械手可以自动缓冲或收回。机械手具有抓夹功能。该项技术已经成功应用到核工业元件加工过程中。相同的技术和功能可以方便的应用和移植到其它应用领域。 技术原理与工艺流程简介: 利用数控气动闭环控制回路。三维柔性力缓冲XY 方向±1 ㎜,Z 方向 10 ㎜,Z 向下插行程 0~500 ㎜可调,可以安装各种用途机械爪,具有形成阻尼缓冲和气动消音。技术水平及专利与获奖情况:处于国内同类型先进技术水平。 应用前景分析及效益预测: 该类型机械手技术可以应用于很多领域,如:机械制造业、汽车工业、化工业、核能工业、生物工业、安全领域等需要提高作业效率、精度、危险环境等行业。 目前该技术成熟,整机价格在 10~16 万人民币之间,可以进行小批量工业化生产。 应用领域:械制造业、汽车工业、化工业、核能工业、生物工业、安全领域等需要提高作业效率、精度、危险环境等行业。 技术转化条件(包括:原料、设备、厂房面积的要求及投资规模): 所需原材料:均为市场上可采购原材料,无特殊要求,例如:气动元件、机械件等; 设备及环境要求: AC220V 电源、普通气源; 所需厂房面积:普通厂房 100 平方米; 人员要求:若干机、电相关专业人员; 初期投资规模:除以上条件外需流动资金 60~80 万。 合作方式及条件: 技术转让,转让费:人民币 50 万元; 合作生产,具体可面谈。 
天津大学 2021-04-11
一种柔性膜张力检测辊
本发明属于柔性膜卷绕输送相关设备领域,并公开了一种柔性膜张力检测辊,它包括水平联接成一体的总张力检测组件和张力分布检测组件;所述总张力检测组件呈底座的形式,并且它的底座芯轴沿着周向方向设置有多个应变式传感器,用于对柔性膜输送过程中总张力的实时检测;所述张力分布检测组件呈辊筒的形式,由模块化的多个辊单元首尾连接而成,其中各个辊单元之间通过结构设计来实现磁性相连和依次供电,并且它的辊筒的轴向和周向分布有柔性传感器,由此执行各个辊单元独立对应区域的张力分布检测。通过本发明,能够以结构紧凑、便于操控的方式同时实现对柔性膜卷绕输送过程中总张力和张力分布的同步高精度测量,并具备适应性和可靠性强等优点。
华中科技大学 2021-04-14
可量产的柔性透明导电膜技术
传统触控传感器使用IT0透明导电膜,IT0透明导电膜存在工艺复杂(中国 目前以从日本进口为主,国内尚不能高品质自主生产)、价格高昂(IT0核心材 料钢为稀有金属)、不能弯折等缺点,基于智能交互设备数量的急剧增加、交互 场景、方式需求增加等原因,触控行业一直在积极寻找替代IT0的新型材料。 重庆大学能源与动力工程学院孙宽研究员团队,通过多年在导电材料领域的深入 研究,使用有机聚合物作为基础导电材料,在低温环境下涂布制作出了柔性透明 导电膜。这种新型柔性导电膜不仅拥有与IT0同等的光电表现,比IT0成本更低,而且具备强柔性的优势,可在触控产业链里对IT0进行有效替代,为未来智能设 备创造更多的触控形态和交互方式。
重庆大学 2021-04-11
JS-008柔性抗裂找平砂浆
JS-008柔性抗裂找平砂浆 本产品是采用德国进口瓦克柔性胶粉与多种精细研磨材料和无机材料复合而成的柔性抗裂找平砂浆,适用于外墙保温砂浆面层、混凝土、水泥砂浆饰面层、真石漆...
山东基舜节能建材有限公司 2021-09-03
电子握力计电子握力测试仪电子握力仪
WCS-100电子握力计   WCS-100型电子握力计具有测量准确、质量可靠、操作简捷、读数方便等特点,主要应用于体质测试中握力数据的测量,面向体育、医卫、劳动、学校、科研等单位开展全民健身活动使用。   技术参数: ■ 量程:0-99.9kg ■ 显示:LCD ■ 分辨率:1%F.S ■ 电压:2节5号电池/直流电源供电
上海欣曼科教设备有限公司 2021-08-23
磁性固定器件应用及其产业化
未来装配式建筑构件若实现工业化、标准化和智能化制造,关键环节是要求构件成型模具拆装灵活,便捷高效,可重复使用,并具通用性。高性能磁性固定器件就是为简化预制混凝土构件模具安装而设计开发的一种新型无损模具固定装置,旨在解决传统螺栓锚定对生产平台的破坏性、难拆卸、通用性差的技术难题。
南京大学 2021-04-10
新型多门控超导纳米线逻辑器件
为了追求极限性能,越来越多的电子系统需要在低温条件下工作。例如,在量子计算机、高性能传感器、深空观测以及一些经典信息处理系统中,通常使用工作温度为2K甚至是mk温区的低温器件,从而在噪声、速度和灵敏度等方面实现接近量子极限的性能。对于这一类低温系统,信号读取与处理通常采用两种方式:第一种是采用超导数字电路SFQ(单磁通量子技术)来实现高性能计算和处理;第二种是将信号传送至几十K的温区,再采用低温CMOS技术对进行信号处理。然而,不论采用何种技术路径,数字电路的功耗都必须控制在极小范围之内,从而保持极低温的工作环境,维持低温器件的高性能。随着应用需求的提高和低温阵列器件规模的扩大,低温电子系统性能受到信号处理和传输技术的制约,急切需要新的方案进行解决。 图1. (a) 采用超导纳米线结构实现的12门控或逻辑门;(b) 超导纳米线数字编码器芯片照片。针对此问题,南京大学吴培亨院士领导的超导电子学研究所团队,赵清源教授和康琳教授课题组设计出新型多门控超导纳米线逻辑器件(superconducting nanowire cryotron, nTron),并利用此器件搭建经典二进制数字编码器;在1.6K的温度下,成功实现数字信息编码,总功耗小于1微瓦(10-6瓦)。同时,他们还利用此编码器对超导纳米线单光子探测器阵列实现数字化读出,为低温阵列探测器的信号读出和处理提供第三种解决方案。图2. 超导纳米线逻辑芯片实现对单光子探测器阵列的数字化读取。半导体数字电路,经历了从电子管、晶体管、混合集成电路至大规模集成电路的发展过程。每一代技术的升级变革,其核心推力都是基础逻辑器件的更新换代。前沿技术领域对超导电子器件的应用需求,也正将超导电子技术推向数字化的发展时代。南京大学吴培亨院士团队基于超导纳米线技术,开展了新型超导逻辑器件(nTron)的研究工作。nTron为单层平面器件,利用局部超导相变,实现高速低功耗的开关逻辑。
南京大学 2021-04-11
分子基光催化产氢器件多相化
在利用太阳能分解水制取氢气的催化剂研究上取得新进展。该研究工作借鉴自然界光合作用,在多个光敏中心多个催化中心产氢器件构筑的基础上,进一步将其植入到金属有机框架材料中,模拟自然界酶催化环境中质子和电子的传输与转移,在有效规避分子基催化剂稳定性差的同时,极大地提高了光催化产氢性能,为人工模拟光催化剂的设计和构筑提供了新的思路。 人工模拟光合作用,利用太阳能在催化剂作用下分解水制取氢气,是实现将太阳能转化为清洁的化学能,解决人类社会面临的能源危机和环境污染问题的理想途径。在早期,我校化学学院苏成勇教授和石建英副教授研究团队发展了空间上相互独立、功能上相互等价,集合8个光敏金属有机钌中心和6个催化Pd2+中心于一体的金属-有机分子笼产氢器件[Pd6(RuL3)8]28+(MOC-16),在单一分子笼内构筑出多个相互独立的能量传递和电子转移通道,获得了高达380 μmol h-1的初始产氢速率和635的TON(48h) [Nature Communications, 2016, 7: 13169]。虽然金属有机分子笼提高了分子基催化剂的产氢性能,但光照条件下的稳定性仍然是制约其进一步应用的决定因素。       最近,我校化学学院苏成勇教授和石建英副教授研究团队又基于配位组装策略实现了Au25(SG)18纳米簇在金属有机ZIF-8主体框架内部和外表面的可控组装[Advanced Materials, 2018, 30,1704576]。采用相似策略,他们将MOC-16植入到ZIF-8主体内,进一步将ZIF-8转化为Znx(MeIm)x(CO3)x (CZIF),获得了MOC-16@CZIF催化剂。
中山大学 2021-04-13
新型硅基环栅纳米线MOS 器件
已有样品/n在主流硅基FinFET集成工艺基础上,通过高级刻蚀技术形成体硅绝缘硅Fin和高k金属栅取代栅工艺中选择腐蚀SiO2相结合,最终形成全隔离硅基环栅纳米线MOS器件的新方法。并在取代栅中绝缘硅Fin释放之后,采用氧化和氢气退火两种工艺分别将隔离的“多边形硅Fin”转化成“倒水滴形”和“圆形”两种纳米线结构。
中国科学院大学 2021-01-12
阳离子基阻变器件电流-保持特性
已有样品/n通过石墨烯缺陷工程控制活性电极离子向阻变功能层中注入的路径尺寸和数量,集中化/离散化阳离子基阻变器件中导电通路的分布来调控其稳定性,此工作是该领域首次在相同结构阻变器件中实现电流-保持特性的双向调控,这种通用的基于二维材料阻挡概念的离子迁移调控方法,也能够移植应用到离子电池,离子传感等研究领域。
中国科学院大学 2021-01-12
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 122 123 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1