高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
风电场风力发电容量预测(服务)
成果简介:风力发电作为新能源的重要组成部分之一,通过对风力发电容量 进行短期和长期的准确预测,可以有效降低风力发电系统成本并提高对风能 利用率和投资效益进行有效的评测。应用时间序列分析方法、小波分析和支 持向量机理论提出了结合小波分析的持续斜率模型多步预测方法,建立了ARMA、基于小波分析的 ARMA、噪声场合下的 ARMA 三种短期预测模型和最小 二乘支持向量机长期预测模型。为了使用户能够更加方便地应用该预测软件,综合应用&n
北京理工大学 2021-04-14
机械臂无模型视觉反馈控制及其自适应操作应用研究
一、项目简介 随着科技进步和社会需求的发展,机器人手/臂除了工业生产,也越来越多用于服务人类的其它各个领域,这必然会使机器人承担比工业中更加多样的操作任务,面临更加多变的工作环境。因此,国内外对非结构自然环境下、具备自主操作能力的机器人的研究十分重视。当前,具备视觉感知能力的机器人已被公认为机器人发展的主流趋势,将视觉与机器人操作相融合,是对人类行为的模拟,由此产生的视觉伺服控制方法为机器人自主操作能力的实现带来了新的思路,代表了机器人的先进控制技术,也是促进机器人智能化发展的一个重要驱动。可以预见,未来的视觉系统将会成为机器人名副其实的眼睛,视觉伺服技术在机器人自主操作中将具有不可替代的作用。 视觉伺服利用视觉传感器提供的环境信息对机器人运动进行实时反馈控制,涉及机器人机械几何设计、运动学和动力学、自动控制理论、计算机视觉图像处理和摄像机标定等,是智能机器人领域中具有重要理论意义的研究课题之一。迄今为止,机器人手/臂的视觉伺服方法在太空遥操作、机器人手术、水果采摘、工业装配、焊接、抓取以及微操作等方面得到越来越多的应用。然而,现阶段可实际应用的方案主要面向特定的标定环境、模型参数已知,机器人操作是编码定式的,不具备模型未知条件下的自主操作能力,特别是当面向未来的刚-柔-软体共融机器人时,其柔型结构造成的运动模型及参数的变化与不确定性,必然使现有确定模型的研究方法失效。因此,无模型(目标几何模型,手眼标定模型,机器人运动模型)、非结构环境下的自适应操作对机器人提出了新挑战,是机器人手臂(尤其柔型手臂)视觉伺服控制研究的难点与前沿问题,不断深入对非结构环境下、无模型的机器人手/臂视觉伺服控制的研究具有重要的理论和现实意义。 在非结构自然环境下使机器人像人一样协调自适应操作是当今机器人研究领域的一项尚未实现但又令人感兴趣的研究工作。从理论上看,非结构自然环境下实现机器人柔性操作,就当前研究依靠单一的控制器设计是困难的。因此,本项目借鉴人的手眼协调操作是自适应学习过程,涉及智能进化和行为优化,将随机动态规划理论,结合约束规则与最优化控制,探索一种变参手眼关系,实现机器人在非结构自然环境下的自适应操作。 二、前期研究基础 研究团队一直致力于机器人视觉反馈控制的研究。在基础理论研究上,针对无标定视觉伺服控制方案与设计,均提出了一些新型方法,有扎实的理论基础和知识积累,并不断跟踪和深入在无模型视觉伺服控制的方面研究和前沿问题。目前,已经着手在无模型视觉伺服的可靠性、稳定性控制方面做了充分的探索工作:针对机器人无标定全局稳定操作问题,研究了一种鲁棒卡尔曼滤波(RKF)合作Elman神经网络(ENN)的全局稳定视觉伺服控制方法;提出了一种基于网络辅助尔曼滤波状态估计的无标定视觉伺服方法,提高伺服系统的鲁棒性。同时,立足机器人发展前沿,建立了多模特征深度学习抓取系统,在无结构环境下实现了机器人智能抓取与定位。 已发表的与项目相关的主要论文有: [1] 仲训杲,徐敏,仲训昱,彭侠夫.基于多模特征深度学习的机器人抓取判别方法.自动化学报,2016,7(42), pp:1022-1029. (EI) [2] Xungao Zhong, Xunyu Zhong and Xiafu Peng. Robots Visual Servo Control with Features Constraint Employing Kalman-Neural-Network Filtering Scheme. Neurocomputing, 2015, 151(3), pp:268-277 (SCI)  [3] Xungao Zhong, Xunyu Zhong and Xiafu Peng. Robust Kalman FilteringCooperated Elman Neural Network Learning forVision-Sensing-Based RoboticManipulation with Global Stability. Sensors, 2013, 10(13), pp:13464-13486. (SCI) [4] Xungao Zhong, Xiafu Peng, Xunyu Zhongand Lixiong Lin. Dynamic Jacobian Identification Based on State-Space for Robot Manipulation. Applied Mechanics andMaterials, vols. 475-476 (2014)pp: 675-679.(EI) [5] Xungao Zhong, Xiafu Peng, Xunyu Zhong and Xueren Dong. Multi-Channel with RBF Neural Network Aggregation Based on Disparity Space for Color Image Stereo Matching. IEEE 5th International Conference on Advanced Computational Intelligence (ICACI), 10(2012) PP:620-625. (EI) [6]XUNGAO ZHONG, XIAFU PENG, XUNYU ZHONG. NEURAL-BAYESIAN FILTERING BASED ON MONTE CARLO RESAMPLING FOR VISUAL ROBUST TRACKING. Journal of Theoretical and Applied Information Technology, 2013, 2(50), pp: 490-496. [7] Xungao Zhong, Xiafu Peng and Xunyu Zhong. Severe-Dynamic Tracking Problems Based on Lower Particles Resampling. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2014, 12(6), pp:4731-4739. [8] Xunyu Zhong, Xungao Zhong and Xiafu Peng. Velocity-Change-Space-based Dynamic Motion Planning for Mobile Robots Navigation. Neurocomputing. 2014, 143(11), pp:153-163. (SCI) [9] Xunyu Zhong, Xungao Zhong, Xiafu Peng. VCS-based motion planning for distributed mobile robots: collision avoidance and formation. Soft Computing,2016,5(20), pp: 1897-1908. (SCI) [10] 仲训杲,徐敏, 仲训昱, 彭侠夫. 基于雅可比预测的机器人无模型视觉伺服定位控制, 控制与决策, 已在线发表, 2018. [11] 仲训杲,徐敏, 仲训昱, 彭侠夫. 基于图像的机器人非标定视觉反馈控制全局定位方法, 厦门大学学报(自然科学版), 已录用, 2018. 三、应用技术成果 (一)基于多模特征深度学习的机器人抓取判别 研究了多模特征深度学习及其在机器人智能抓取判别中的应用,该方法针对智能机器人抓取判别问题, 研究多模特征深度学习与融合方法. 该方法将测试特征分布偏离训练特征视为一类噪化, 引入带稀疏约束的降噪自动编码 (Denoising auto-encoding, DAE), 实现网络权值学习; 并以叠层融合策略, 获取初始多模特征的深层抽象表达, 两种手段相结合旨在提高深度网络的鲁棒性和抓取判别精确性. 实验采用深度摄像机与 6 自由度工业机器人组建测试平台, 对不同类别目标进行在线对比实验. 结果表明, 设计的多模特征深度学习依据人的抓取习惯, 实现最优抓取判别, 并且机器人成功实施抓取定位, 研究方法对新目标具备良好的抓取判别能力. (二)无标定视觉伺服解决方案及其机器人操作应用 研究了无标定视觉伺服方法及其在机械臂任务操作中的应用。首先提出视觉伺服目标:假设机器人或者摄像节的模型参数未知或者部分未知,视觉伺服的目标是使用摄像节作为传感器,引导机械臂运动,使当前图像特征收敛到期望图像特征,从而完成定位或者跟踪的任务。 手眼协调关系描述。关节图像雅克比矩阵定量描述了机械臂关节变化引起图像特征变化,它是关节-图像映射的局部线性化矩阵。 建立图像雅克比的在线估计器。将关节图像雅克比矩阵的每一个元素作为辅助系统的状态,建立辅助系统的状态方程;摄像机提取到的图像特征作为测量值,建立辅助系统的观测方程。根据Kalman滤波器理论,我们设计了对关节图像雅克比的在线实时估计算法。 构建基于图像矩的目标函数。为了避免传统的基于点特征的缺陷,例如点特征的标记、提取与匹配过程复杂且通用性较差问题。构建基于图像矩的图像特征向量完成视觉伺服任务,来提高视觉伺服系统的稳定性和可靠性。 四、合作企业 厦门万久科技股份有限公司是一家集销售、软件研发、技术服务、加工技术整合为一体的高新技术企业。目前公司的经营范围涉及CNC软件开发及数控系统销售、CNC控制零件销售及专业维修;工艺优化、机台升级与技术改造、工程配电与软件优化、专用机控制系统开发、多轴机的设计与开发、机台精度检测与校正优化服务等。公司是国际知名生产制造企业——富士康的产品供应商和技术服务商。    
厦门大学 2021-04-11
泌尿生殖系统模型
1、参照典型人体标本及国内外经典权威教材及图谱制作,如人卫出版社丁文龙主编的《系统解剖学》、人卫出版社南京医学院主编的《人体解剖学图谱》、江苏科学技术出版社姜同喻编著的《连续层次解剖图谱》、山东科学技术出版社丁自海主译《格式解剖学》、广东科技出版社胡耀民主编的《人体解剖学标本彩色图谱》等,造型自然准确、颜色自然,满足教学需要;
张家港市华亿科教设备有限公司 2024-12-23
一种雷达视觉融合扭矩测控系统曲线质量自动判断方法
本发明公开了一种雷达视觉融合扭矩测控系统曲线质量自动判断方法,包括如下步骤:步骤S1:进行拐点识别;步骤S2:进行疑问图形判断;步骤S3:进行特殊扣型与普通扣型判断;步骤S4:矩阵公式应用。本发明的方法显著提高了石油器械作业效率,减少了人工操作时间,降低了人为因素对判断结果的干扰,确保了判断结果的一致性和可重复性。同时,通过实时、准确地识别和分类扭矩曲线,本发明能够及时发现不合格图形并报警,避免不合格连接进入后续作业环节,从而有效保障套管连接质量,为石油开采和钻井作业提供更加可靠的技术支持。
南京工程学院 2021-01-12
一种云环境下基于信任模型的跨租户访问控制方法
本发明公开了一种云环境下基于信任模型的跨租户访问控制方 法,针对云计算多租户架构特点,实现一个租户的用户经过相应授权 可以访问其他租户的资源,解决租户之间协作带来的资源安全性和隐 私性问题。通过定义两种类型的租户信任关系,将租户信任关系概念 引入访问控制模型中,反映在两个租户之间的访问控制需求。通过模 型元素的定义和模型函数的形式化描述,构造了租户信任模型,以适 应云计算多租户的特点,实现跨租户访问控制。
华中科技大学 2021-04-14
基于本体模型的网络化控制系统入侵检测方法及系统
本发明公开了一种基于本体模型的网络化控制系统入侵检测方法及系统。该方法构建网络化控制系统本体模型,基于该模型进行入侵检测,并权衡决策后得到最终检测结果。系统包括主节点,多个从节点,和负责消息传递的工业通信网络;主节点负责完成自身的主机活动审计数据的收集、所有网络报文的收集、主节点对应的控制闭环流的检测、控制对象检测、整个系统所有节点主机活动审计数据的检测、网络活动检测以及检测结果的协调;各从节点负责完成该节点对
华中科技大学 2021-04-14
新冠肺炎动态感染过程建模与预测分析
面对疫情,北京航空航天大学机械工程及自动化学院先进数控和智能制造团队刘强教授、肖文磊副教授等一批教师和研究生自发组成“大数据建模分析工作群”,开始收集疫情数据,交流和讨论建模方法。刘强、肖文磊又与工作群中的孙鹏鹏、王柳权、臧辰鑫、朱三颖、高连生等人,组成了“2019-nCoV疫情建模分析应急响应研究小组”核心攻关组,全力以赴开展本次疫情建模仿真和预测分析研究工作。疫情建模分析应急响应小组的研究工作是在2003年郇极教授提出的“一种基于自动控制理论的SARS传染预测模型”的基础之上,结合此次新冠疫情原发地高度集中、恰逢春节期间人口流动的特点,采用控制论原理和大数据分析方法建立功能更全面的2019-nCoV动态感染过程模型。刘强教授团队对北京、上海、重庆、温州、长沙、郑州、成都、杭州、深圳等40余个城市的疫情数据发展趋势进行了动态仿真分析。基于分析结果,应急响应小组直接向上级部门提交疫情关键数据预测报告2份,直接向中国疾控中心提供预测分析数据及报告2份,向上级提出北京延期恢复正常上班的紧急建议1份,为高层疫情防控决策提供了及时有效的技术数据支持。
北京航空航天大学 2021-04-10
新冠肺炎的疫情评估与预测报告
面对国家在疫情防控决策方面的重大战略需求,北京航空航天大学计算机学院王静远副教授,联合经济管理学院吴俊杰教授、部慧副教授,计算机学院软件开发环境国家重点实验室孙磊磊老师等,快速反应,在1月22日开始陆续组织了一支包括20余名师生在内、跨学科、跨专业的疫情应急研究团队,开展基于大数据的疫情预测与大数据分析科研攻关工作。 团队经过连续不眠不休的集中攻关,于1月25日完成了第一个针对新冠肺炎疫情预测的模型,并最早具备了对外提供疫情预测服务的能力。该模型具备优秀的预测精度和疫情解释能力,为上级部门的疫情防控决策提供了重要的支撑。尤其是在疫情拐点尚未出现、全国发病走势尚不明朗的疫情早期阶段,为防疫决策提供精准的数据参考。预测模型基于王静远老师在2014年深圳H7N9流感爆发和季节性流感流行期间使用市民活动大数据与Meta-Population动力学模型相结合的方式设计的面向城市的呼吸道类疾病传播分析与预测模型,曾应用于深圳流感防控。
北京航空航天大学 2021-04-10
新冠病毒传播建模预测和模拟推演平台
近日,南科大“人流大数据和AI驱动的新型冠状病毒(COVID-19)传播建模预测和模拟推演平台”内测版本正式推出(下简称“推演平台”)。该平台可实现在城市尺度上,基于人流移动的新型冠状病毒传播感染情况的细粒度预测和模拟,为有关部门制定不同的隔离和公共防疫政策(如封闭特定城市区域或道路)提供参考。新型冠状病毒的感染传播与人流移动存在密不可分的关联。现阶段的多数研究只停留在简单的相关性分析以及基于全国地图的数据可视化阶段,缺乏在城市尺度上、针对人流移动的细粒度深度分析,更缺乏基于人流移动的传播模拟推演模型以及潜在感染源和风险区域的挖掘模型。随着复工潮的来临,战“疫”面临新的挑战。南方科技大学科研部、工学院、计算机科学与工程系(下简称“计算机系”)和南方科技大学-东京大学超智慧城市联合研究中心紧急组织科研力量,成立“新型冠状病毒传播建模预测项目组”,由计算机系副教授宋轩担任负责人,迅速启动针对新型冠状病毒传播感染的“大数据分析和AI建模推演平台”研发工作。该平台是一个针对新型冠状病毒传播的大数据分析和AI建模平台(如图1),其中预测和模拟推演模型完全由数据驱动,需要使用人流大数据进行训练和优化。数据拥有单位只要将人流大数据输入平台,平台即可以自动完成模型迭代训练,并输出相关的预测和模拟推演的可视化结果。其预测和模拟推演的精度由模型训练数据的质量、精细度和覆盖度决定。平台后续期待更多单位(如GPS轨迹数据、CDR数据等人流大数据拥有单位)参与进来,共同完善该平台。推演平台通过整合、处理和分析各类多模态人流移动和出行大数据,结合新一代的人工智能技术,完成对新型冠状病毒的传播和感染人群细粒度建模,从而实现在城市区域内细粒度预测、模拟和动态推演传播感染情况。平台可实现的基本功能主要有以下几个方面:一是建立新型冠状病毒和人流移动的映射模型,包括传染概率确定/潜伏期分析/传染代数分析等;二是分析隐藏病患,由于疾病传播为链式,可以根据缺失轨迹链反推出尚未确诊的疑似病患;三是分析风险人群,可根据病患轨迹寻找可能有接触的风险人群,提前预警;四是挖掘潜在病原地,分析病人间的轨迹交叉点确认潜在的未知病原地(如图3)。在以上功能基础上,平台可以实现设定不同的公共防疫政策(如封闭城市内的高风险感染区域),在城市尺度上,动态推演和模拟在这些政策下的城市传播感染情况,从而帮助相关部门制定更为高效的隔离和公共防疫政策(如图4)。
南方科技大学 2021-04-10
大数据人工智能预测近视眼发展
利用十年百余万次的近视眼医学验光大数据,揭示出真实世界青少年近视眼发生、进展与稳定的规律。在此基础上,运用随机森林算法进行机器学习,建立人工智能预测系统,可对近视进展趋势进行个体化预测,3年内准确率达90%,10年内准确率达80%以上,也可提前8年有效预测高度近视,为近视眼的精准干预提供了科学依据。开发出一套人工智能云平台,提供高效的近视预测服务。通过访问智能平台,输入前后两次检查的年龄和度数(间隔至少一年),即可预知10年内的近视度数变化与高度近视风险。       中山眼科中心近年来对近视眼进行了系统性的研究,不断取得突破,产生了重大的社会影响和意义。
中山大学 2021-04-13
首页 上一页 1 2
  • ...
  • 13 14 15
  • ...
  • 400 401 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1