高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
分子基光催化产氢器件多相化
在利用太阳能分解水制取氢气的催化剂研究上取得新进展。该研究工作借鉴自然界光合作用,在多个光敏中心多个催化中心产氢器件构筑的基础上,进一步将其植入到金属有机框架材料中,模拟自然界酶催化环境中质子和电子的传输与转移,在有效规避分子基催化剂稳定性差的同时,极大地提高了光催化产氢性能,为人工模拟光催化剂的设计和构筑提供了新的思路。 人工模拟光合作用,利用太阳能在催化剂作用下分解水制取氢气,是实现将太阳能转化为清洁的化学能,解决人类社会面临的能源危机和环境污染问题的理想途径。在早期,我校化学学院苏成勇教授和石建英副教授研究团队发展了空间上相互独立、功能上相互等价,集合8个光敏金属有机钌中心和6个催化Pd2+中心于一体的金属-有机分子笼产氢器件[Pd6(RuL3)8]28+(MOC-16),在单一分子笼内构筑出多个相互独立的能量传递和电子转移通道,获得了高达380 μmol h-1的初始产氢速率和635的TON(48h) [Nature Communications, 2016, 7: 13169]。虽然金属有机分子笼提高了分子基催化剂的产氢性能,但光照条件下的稳定性仍然是制约其进一步应用的决定因素。       最近,我校化学学院苏成勇教授和石建英副教授研究团队又基于配位组装策略实现了Au25(SG)18纳米簇在金属有机ZIF-8主体框架内部和外表面的可控组装[Advanced Materials, 2018, 30,1704576]。采用相似策略,他们将MOC-16植入到ZIF-8主体内,进一步将ZIF-8转化为Znx(MeIm)x(CO3)x (CZIF),获得了MOC-16@CZIF催化剂。
中山大学 2021-04-13
电动汽车增程器用氢转子机
北京工业大学 2021-04-14
微通道甲醇重整制氢反应器
该反应器可在较低工作温度下实现甲醇高效重整制氢,在275oC下可以实现94%以上的甲醇转化率,重整气中H2含量为74%,CO2含量为25%,CO含量为1%。经过36小时连续测试后性能稳定。单片反应器输出功率约12W。该反应器可与蒸发器进行集成,用于为小型便携式燃料电池堆栈供燃料气。相关研究结果已发表SCI论文两篇,所申请发明专利处于实质审查阶段。成熟度:已有样品技术创新类型:改革创新期望技术合作方式:技术入股
哈尔滨工业大学 2021-04-14
耦合储氢单元的燃料电池电源
1 成果简介作为一种清洁、高效的能量转换装置, 燃料电池是各种电化学电池体系中的理论比能量“ 绝对冠军”, 而且功率密度高、电流密度大, 是最先进的能量转换技术之一。燃料电池在发电过程中,除了提供电能以外,还会产生废热。所以传统燃料电池电堆中,单片燃料电池之间通常设有冷却板,需要采用大流量的空气或者冷却水来为燃料电池散热。而燃料电池工作时需要氢气作为燃料,如果以储氢合金作为氢源,则储氢合金在释放氢气时会吸收热量。 本成果将燃料电池与储氢单元进行结构的耦合,可利用储氢合金来部分吸收燃料电池发电时产生的废热,既解决了燃料电池水管理和热管理的难题,又能解决储氢单元放氢稳定性的问题,还能降低燃料电池系统寄生功率,提高系统的功率密度和能量密度。表 1 中列出了耦合型燃料电池的性能参数。本成果耦合型质子交换膜燃料电池解决了质子交换膜燃料电池的水热管理问题,能够使燃料电池系统结构更加紧凑,能量密度和功率密度更高。 上图 耦合燃料电池的内部结构及外部结构图2 应用说明经过近十年来的电动汽车、分布式电站、电源等领域的广泛示范应用(燃料电池已经在航天、军事上得到应用,燃料电池家用电源已经在日本产业化),质子交换膜燃料电池技术的成熟度已经逐渐被用户所接受。目前,其商业化主要问题是价格较高(采用进口材料成本昂贵),而本项目利用国产原材料制备燃料电池电源,燃料电池材料供应不仅有安全保障,而且还有低成本优势,可望克服燃料电池高成本的商业化障碍。3 效益分析由于目前国内外尚无同类产品,而且各行各业对新型电源的需求比较迫切,因此本成果具有较大的推广空间。 如批量生产, 本电源价格每台约 1500 元/千瓦。 来自政府的资金补助以及军事、工业、新能源等应用领域的直接采购是使燃料电池电源商业化逐渐兴盛的主因。据美国市场研究机构 Pike Research 估计, 2016 年市场上的主力燃料电池产品功率将在 100W~2kW 之间,用于替代部分铅酸电池和柴汽油发电机,主要应用于船舶、 专用车、无人载具、 战场支持系统、 备用电源、 应急电源等。
清华大学 2021-04-13
湖南隆深氢能科技有限公司
湖南隆深氢能科技有限公司 2022-11-01
洁净能源汽车及燃料电池轿车高压氢气加气站和供氢技术 研发
同济大学在燃料电池轿车整车集成开发技术、电电混合驱动燃料电池动力系统技术、 车用燃料电池发动机技术、车用燃料电池发动机技术、汽车电动辅助系统技术研究等方 面有突破型进展,与此同时还在氢能源设施、氢气加注站、充电站方面进行配套研究, 也取了进展。已研制三代燃料电池轿车开发平台,“超越一号” 燃料电池轿车样车上 的多项技术填补了国内空白,并获“2003 年上海工博会创新奖”;“超越二号”、“超 越三号” 燃料电池轿车分别在第六、七届“必比登”国际清洁汽车挑战赛上的 7 项测 试中获 5 项 A 级好成绩。并装载于上海大众、上汽集团、奇瑞汽车的整车产品,2005 年组成示范运营车队。2005 年燃料电池轿车被评为中国高等学校十大科技进展。
同济大学 2021-04-13
高性能电机及其健康状态监测系统研发技术
团队具备成熟的高性能电机研发能力,具备瞬态有限元仿真技术、多物理场联合仿真技术、场路耦合仿真技术,能够定制开发有刷/无刷直流、感应电机、电励磁/永磁同步等各类电机,助力多家企业实现核心电机自主化、国产化。 团队研发了基于空间磁场的高性能电机健康状态在线监测系统,能够实时监测电机健康状态,即使发现电机微小故障,有效提高电机可靠性。
重庆文理学院 2025-05-19
一种人参冻干工艺的优化技术
人参作为传统中药材,早在《神农本草经》中就被列为上品,具有“补中益气,养血安神,强壮体魄”的功效,长期以来在中医药中占据着重要地位,尤其在提升体力、增强免疫力等方面有显著作用。 随着现代技术的发展,冻干技术的应用为人参加工带来了革命性变化。通过低温和真空环境下的升华原理,冻干技术能够去除新鲜人参中的水分,最大限度保留其活性成分、营养物质和药效。这不仅延长了产品的保质期,还改善了产品的便捷性,便于储存和运输,适应了现代消费者的需求。 本项目专注于人参冻干技术的研发,旨在提高人参产品的质量与市场竞争力。冻干后的产品不仅保留了原有的药效和营养成分,还具有更长的保质期,能够广泛应用于人参粉、营养补充品、保健食品等多个领域。同时,项目优化了冻干工艺,提升了有效成分的提取率,确保最终产品在营养和药效上的最大保留。 通过技术创新与产业化应用,本项目将推动人参产业的现代化发展,提升人参附加值,满足国内外市场对高品质人参产品日益增长的需求,为行业带来更多发展机遇。 1. 目标市场与市场规模: 本项目主要面向国内外高端健康食品、保健品和营养补充品市场,重点关注中老年人、亚健康人群及健身爱好者。随着生活水平提高,年轻消费者也逐渐关注天然、绿色健康产品,冻干人参成为理想选择。全球人参市场年增长率约为5%-7%,冻干人参的潜力尤为巨大,特别是在高端健康领域。 2. 市场竞争预测: 目前,国内外已有企业涉足人参冻干技术,但大多数仍处于初步阶段,技术尚不成熟,且现有产品集中于中低端市场,冻干工艺不够精细,导致有效成分损失较大。竞争者包括传统人参生产商和新兴健康品牌。随着消费者对品质要求提升,市场将向高品质、高效能产品倾斜。本项目的冻干技术创新和产品高端化,使其具备强大竞争力,有望迅速占领高端市场份额。 3. 本项目核心竞争优势: 本项目的核心竞争优势在于冻干技术创新。相比传统工艺,项目技术能更好保留人参中的有效成分,提高营养价值和药效。产品形态多样(如粉末、颗粒、薄片等),满足不同消费者需求,提供便捷使用体验。项目在原材料采购、生产环节和质量控制上的优势,确保产品的高品质和稳定性。随着市场对高品质健康产品需求增长,本项目具备较强的技术壁垒和市场竞争力。
延边大学 2025-05-19
世界首创氢基熔融还原冶炼技术在内蒙古乌海市落地转化
标志着世界首创的氢基熔融还原冶炼技术在乌海市成功落地转化。项目生产的铸造高纯生铁是高端装备制造的基础材料,可广泛用于高铁、核电、风电铸件、蒸汽轮机和各种抗低温冲击铸件及球墨铸铁产品的深加工等领域。
内蒙古自治区科技厅 2021-04-20
高活性高容量金属氢化物储、制氢关键技术开发与应用
《能源技术革命创新行动计划(2016-2030年)》,将“氢能与燃料电池技术创新”列入15项重点任务之一。项目团队围绕氢的制取、储存和应用展开研究,突破高活性高容量金属氢化物储、制氢关键技术,成功开发了高活性高容量镁基金属氢化物储、制氢材料,相关性能达到了国际先进水平。团队主持承担了国际合作项目、国家自然科学基金、国家科技部863、国家教育部、江苏省教育厅等项目20余项。发表SCI论文100余篇,授权国家发明专利10余件。
南京工业大学 2021-01-12
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 683 684 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1