高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
刚体陀螺实验装置
1 基本概念 陀螺仪( gyroscope)的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是 不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车 其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪 在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。 然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。在现实生活中,陀螺仪 发生的进动是在重力力矩的作用下发生的。 陀螺仪多用于导航、定位等系统,常用实例如手机GPS定位导航、卫星三轴陀螺仪定位。陀 螺仪基本上就是运用物体高速旋转时,角动量很大,旋转轴会一直稳定指向一个方向的性质,所 制造出来的定向仪器。不过它必需转得够快,或者惯量够大(也可以说是角动量要够大)。不然, 只要一个很小的力矩,就会严重影响到它的稳定性。 2 陀螺发展历史 1850年法国的物理学家莱昂傅科( J.Foucault)为了研究地球自转,首先发现高速转动中的转 子( rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro(旋转)和skopein (看)两字合为gyro scopei 一字来命名这种仪表。 18世纪欧拉建立的动力学方程和欧拉运动学方程,为陀螺运动的理论奠定了基础。但是制造 出一个实用的陀螺却经历了长时间的探索。19世纪中期,随着钢制外壳船舶的出现,原来所用的 磁罗盘不再适用,因而用陀螺导航的要求日益迫切。在第一次世界大战中,美国海军制成了陀螺 导航仪,并很快被其他国家所采用。随着航海和航空事业的发展,陀螺仪已成为不可缺少的精密 导航仪器。20世纪初出现了飞机的陀螺稳定器和自动驾驶仪。但直到1940年后,陀螺罗盘才完全 代替了磁罗盘,1950年出现了惯性导航系统。 不论制造得多么精密的陀螺,要完全消除轴承的摩擦力并使质心和支点重合是不可能的,因 而就会产生外加干扰力矩的作用,引起陀螺转子自转轴的缓慢进动,称为陀螺漂移。这时的进动 角速度称为漂移角速度。陀螺漂移角速度的大小是衡量陀螺精度高低的标志。为最大限度地减少 漂移,近代陀螺的研究课题主要是如何实现无干扰力矩的支承。主要途径是用电场力来代替支架, 实现无支承悬浮。如果转子是个标准的球形,则电场力通过其中心,从而实现无摩擦的悬浮。另刚体陀螺实验系统 GT300-3DT-ED 上海紫航电子科技有限公司 Tel:54170805 Fax:54170905 共 7 页 / 第 2 页 一个途径是用磁场力来实现转子的悬浮,但要求转子必须是用超导体制造的,才能使磁力线垂直 于球形转子的表面且不穿透它的表面。这就是近代电陀螺和磁陀螺的基本设想。 3 刚体陀螺仪结构 从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点, 而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运 动。更确切地说,一个绕对称轴高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺 的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪。 图1 陀螺仪结构 陀螺仪的基本部件有: 1) 陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴 高速旋转,并见其转速近似为常值); 2) 内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构); 3) 附件(是指力矩马达、信号传感器、控制器等)。 4 陀螺仪工作原理 陀螺仪,是一个圆形的中轴的结合体。而事实上,静止与运动的陀螺仪本身并无区别,如果 静止的陀螺仪本身绝对平衡的话,抛除外在因素陀螺仪是可以不依靠旋转便能立定的。而如果陀 螺仪本身尺寸不平衡的话,在静止下就会造成陀螺仪模型倾斜跌倒,因此不均衡的陀螺仪必然依 靠旋转来维持平衡。刚体陀螺实验系统 GT300-3DT-ED 上海紫航电子科技有限公司 Tel:54170805 Fax:54170905 共 7 页 / 第 3 页 陀螺仪本身与引力有关,因为引力的影响,不均衡的陀螺仪,重的一端将向下运行,而轻的 一端向上。在引力场中,重物下降的速度是需要时间的,物体坠落的速度远远慢于陀螺仪本身旋 转的速度时,将导致陀螺仪偏重点,在旋转中不断的改变陀螺仪自身的平衡,并形成一个向上旋 转的速度方向。当然,如果陀螺仪偏重点太大,陀螺仪自身的左右互作用力也将失效!。 而在旋转中,陀螺仪如果遇到外力导致,陀螺仪转轮某点受力。陀螺仪会立刻倾斜,而陀螺 仪受力点的势能如果低于陀螺仪旋转时速,这时受力点,会因为陀螺仪倾斜,在旋转的推动下, 陀螺仪受力点将从斜下角,滑向斜上角。而在向斜上角运行时,陀螺仪受力点的势能还在向下运 行。这就导致陀螺仪到达斜上角时,受力点的剩余势能将会将在位于斜上角时,势能向下推动。 而与受力点相反的直径另一端,同样具备了相应的势能,这个势能与受力点运动方向相反, 受力点向下,而它向上,且管这个点叫“联动受力点”。当联动受力点旋转180度,从斜上角到达 斜下角,这时联动受力点,将陀螺仪向上拉动。在受力点与联动受力互作用力下,陀螺仪回归平 衡。 5 实验原理 陀螺仪被用在飞机飞行仪表的心脏地位,是由于它的两个基本特性:一为定轴性( inertia or rigidity),另一是进动性( precession),这两种特性都是建立在角动量守恒的原则下。 5.1 定轴性 当三自由度陀螺转子高速旋转后,若不受外力矩的作用,不管基座如何转动,支撑在万向支 架上的 陀螺仪自转轴指向惯性空间的方位不变,这种特性叫“定轴性”。如果我们以地球为基准, 则可以认为三自由度陀螺相对于地球运动,这种运动称为陀螺的假视运动或视在运动。视在运动 是陀螺稳定性的表现。 其惯性随以下的物理量而改变: 1)转子质量愈大,转动惯量I愈大; 2)转子旋转半径愈大,转动惯量I愈大; 3)转子旋转速度愈高,转动惯量I愈大; 5.2 进动性刚体陀螺实验系统 GT300-3DT-ED 上海紫航电子科技有限公司 Tel:54170805 Fax:54170905 共 7 页 / 第 4 页 在运转中的陀螺仪,如果外界施一作用或力矩在转子旋转轴上,则旋转轴并不沿施力方向运 动,而是顺着转子旋转向前90度垂直施力方向运动,此现象即是进动性。 进动性的大小也有三个影响的因素: 1)外界作用力愈大,其进动性也愈大; 2)转子的质量惯性矩(moment of inertia)愈大,进动性愈小; 3)转子的角速度愈大,进动性愈小; 而进动方向可根据进动性原理取决于施力方向及转子旋转方向。 6 实验系统性能 1)刚体陀螺仪  尺寸:200*200*200mm  重量: 1.6Kg 2)转子电机:直流无刷电机(双电机结构); 3)电机转速:0~6000r/min(可调); 4)电源  电压:DC +12V  电流:3A 7 实验系统特点 1)采用三自由度刚体陀螺结构,可进行完善的陀螺实验及演示;刚体陀螺实验系统 GT300-3DT-ED 上海紫航电子科技有限公司 Tel:54170805 Fax:54170905 共 7 页 / 第 5 页 2)转子电机采用高速无刷电机,转速平稳,寿命长; 3)转子采用双电机结构,保障了转子的对称性,并加大了转子驱动力矩,启动速度快; 4)配置有专用控制器,可以完成转子转速控制,方便实验; 8 实验操作 将刚体陀螺仪器平放在桌面上,仪器周转保留一定空间。 1)接通电源,打开开关; 2)设置转子转速:大、中、小; 3)启动陀螺,观察陀螺转子转速是否已经稳定; 4)定轴性实验 当三自由度陀螺转子高速旋转后,若不受外力矩的作用,不管基座如何转动,支撑在万向支 架上的陀螺仪自转轴指向惯性空间的方位不变,这种特性叫“定轴性”。 当陀螺转子高速旋转稳定后,手持基座分别绕刚体陀螺三个轴转动,观测刚体陀螺仪转子轴 的指向的变化。 分别改变转子转速大中小,观测陀螺转子轴的变化。 5)进动性实验 进动性是三自由度陀螺仪的一个基本特性。陀螺仪绕着与外力矩矢量相垂直的方向的转动, 叫做进动,其转动角速度叫做进动角速度。 进动角速度的方向取决于转子动量矩H和外力矩M的方向。外加力矩沿陀螺自转方向转动 90°即为进动角速度( )矢量方向。或者用右手定则记忆:从动量矩H沿最短路径握向外力矩M的 右手旋进方向,即为进动角速度方向。 通过控制器可改变转子飞轮正反转、转速,从而控制动量矩H的方向和大小,通过内框两侧 不同一侧加挂已知重量砝码,改变外力矩M的大小和方向,动量矩H为转子转动惯量和转速的乘 积,方向符合右手定则 进动角速度计算公式:ω=M/H sinθ 当θ=90°时,sinθ=1,所以 ω=M/H =M/Iωr 6)关闭电源,断开开关;刚体陀螺实验系统 GT300-3DT-ED 上海紫航电子科技有限公司 Tel:54170805 Fax:54170905 共 7 页 / 第 6 页 7)撤收仪器设备。 9 适用课程 惯性传感器原理、惯性导航原理、导航制导与控制、飞行控制原理、无人机实训实验、基础 力学、刚体力学、陀螺力学、理论力学、新型传感器原理及应用等。 10 注意事项 1)陀螺飞轮高速旋转时,不可用手触摸或试图阻止其转转; 2)实验系统工作时,尤其是陀螺转子处于高速旋状态下,必须有人在场; 3)刚体陀螺仪属于精密机械结构,操作中应当轻拿轻放,以免损坏设备。
上海紫航电子科技有限公司 2022-06-20
一种多级电位补偿装置及失超检测装置
本发明公开了一种多级电位补偿装置及失超检测装置,包括感 应线圈、补偿线圈,位于补偿线圈两端的接线柱以及位于补偿线圈上 的多个分接头;分接头可沿着补偿线圈的表面滑动,在补偿线圈的表 面与分接头接触的部分可导电;感应线圈通过接线柱与补偿线圈并联 连接;感应线圈与超导磁体同心放置,用于感应超导磁体中的感应电压;补偿线圈将感应电压通过多个分接头分配并调节大小,实现对超 导磁体感应电压的补偿。本发明可以消除超导磁体中感应电压在失超 检测过程中对电压信号检测的影响,避免失超保护装置的误判;同时 该装置制作安装简
华中科技大学 2021-04-14
射频传感网实现睡眠呼吸监测的技术与系统研究
睡眠呼吸监测及其呼吸信号的检测方法
中山大学 2021-04-10
微型集成式固体电解质环境监测气体传感器
一、项目简介随着工业化进程的加速推进,人类社会各方面的发展对化石燃料的消耗与日俱增,而由此产生的大气环境污染问题也愈发严重,对人类的生存和健康、自然生态环境造成极大的损害。基于固体电解质的气体传感器,结合先进的 MEMS 和镀膜技术,对于 CO 、SO 等污染性气体浓度的实时监测、防治十分重要。22项目以 Li3PO 、Li3PO -Li SiO 薄膜固体电解质薄膜作为导电介质,研制 CO 、34422SO 等环境监测气体传感器。通过固体电解质薄膜的 CO 、SO 气体传感器的响应222原理分析,设计了集成式环境监测气体传感器,选择了合适的反应电极材料,结合 MEMS 薄厚膜工艺,采用热阻蒸发镀膜工艺沉积 Li PO 固体电解质薄膜,丝网34印刷厚膜技术制备反应电极和加热电极,完成了集成式微型 CO 、SO 气体传感器22的研制、封装、测试,为工业应用奠定了基础。微型气体传感器可实现 CO 和 SO22气体的高精度监测,并具有体积小、功耗低、成本低的特点。西安交通大学国家技术转移中心二、技术指标(性能参数)芯片尺寸封装方式1.6mm x 1.8mmTO 封装检测范围测量误差工作电压传感
西安交通大学 2021-04-10
一种基于无线信息交互的车辆定位完好性监测方法
本发明提供一种基于无线信息交互的车辆定位完好性监测方法,包括:本车通过卫星定位接收机接收并解析导航卫星观测信息,并通过本车搭载的DSRC传输单元接收并解析车联网的邻车状态信息包,根据所述导航卫星观测信息和所述邻车状态信息包确定本车的全局PL;根据本车的全局PL和车联网的AL评估完好性状态,根据完好性状态的评估结果确定本车定位结构的调整方案。通过将移动邻车节点作为参考目标,扩展了车载卫星定位接收机实施自主完好性监测的观测信息,从而降低了完好性监测对卫星可见性条件的要求。
北京交通大学 2021-04-10
FBG光谱特性实现航空结构健康监测的关键技术研究
本项目以前期积累的有关FBG传感技术在航空结构健康监测中的研究成果和经验为基础,把握国内外最新研究进展,研究FBG传感器要实现航空结构健康监测的实际工程应用所需解决的关键技术问题。着重解决以下几个问题:(1)光纤Bragg光栅反射谱重构技术;(2)基于光纤Bragg光栅反射谱的损伤特征参数的提取及评估方法;(3)光纤Bragg光栅的应变信号/温度信号的分离方法。以推动FBG传感技术的实用化进程
江苏师范大学 2021-04-11
危岩体高效治理及非接触式高精度变形监测研究
本项目实施过程中利用三维激光扫描仪对重庆市江津区四面山镇凤四路(K16+090-K16+100)段危岩体的变形进行监测,得到监测期内危岩体的位移变化规律,通过对海量点云图的数据处理,研究了该危岩体的失稳规律,从而提出了一种危岩体失稳预判模型,为准确预报危岩体坍塌事故提供了依据。与此同时,利用激光测距技术及自主研制的岩体倾角测试系统对危岩体的变形位移近一步进行了监测,所得结果印证了三维激光扫描仪所得数据的准确性。在获得危岩体变形统计参数的基础上,考虑到现场实际情况及理论研究的严谨性,对危岩体所在区域的水系分布状况进行了钻孔探测,同时利用现场原位测试系统结合室内三轴试验,得到了危岩体所在区域各岩性岩体的物理力学参数,在获得原岩应力分布状况后,于室内开展了危岩体的锚固治理效果数值模拟研究,通过研究确定了锚固治理的最佳方案,并于现场进行施工。最后,利用RSMZ4FD智能动测仪对锚固治理效果进行了检测,同时通过提出的迷糊评价方法对治理后的危岩体稳定性进行了整体性评价,结果表明,本次危岩体治理效果理想。
重庆大学 2021-04-10
微型集成式固体电解质环境监测气体传感器
一、项目简介随着工业化进程的加速推进,人类社会各方面的发展对化石燃料的消耗与日俱增,而由此产生的大气环境污染问题也愈发严重,对人类的生存和健康、自然生态环境造成极大的损害。基于固体电解质的气体传感器,结合先进的 MEMS 和镀膜技术,对于 CO 、SO 等污染性气体浓度的实时监测、防治十分重要。22项目以 Li3PO 、Li3PO -Li SiO 薄膜固体电解质薄膜作为导电介质,研制 CO 、34422SO 等环境监测气体传感器。通过固体电解质薄膜的 CO 、SO 气体传感器的响应222原理分析,设计了集成式环境监测气体传感器,选择了合适的反应电极材料,结合 MEMS 薄厚膜工艺,采用热阻蒸发镀膜工艺沉积 Li PO 固体电解质薄膜,丝网34印刷厚膜技术制备反应电极和加热电极,完成了集成式微型 CO 、SO 气体传感器22的研制、封装、测试,为工业应用奠定了基础。微型气体传感器可实现 CO 和 SO22气体的高精度监测,并具有体积小、功耗低、成本低的特点。西安交通大学国家技术转移中心二、技术指标(性能参数)芯片尺寸封装方式1.6mm x 1.8mmTO 封装检测范围测量误差工作电压传感
西安交通大学 2021-04-10
SCR系统“流场-NOx”分布式在线监测及其智能控制技术
该项目在燃煤电站SCR脱硝过程中通过“流场-NOx浓度”分布式监测系统进行实时监测,通过数据获得“动态配氨”策略,有效节氨,并耦合“入口NOx浓度预测”MPC模块的主控制器,实现喷氨总阀超前动作、消除系统迟滞。
东南大学 2021-04-11
基于可穿戴设备的脑卒中病人病态步态监测与病理分析系统
已有样品/n脑卒中(中风)已经成为我国致死率第一的疾病。中国目前已经有1100万的脑卒中病人,而根据世界银行对中国慢性病调查和分析,他们认为如果中国现在慢性病控制的这些状况不改变的话,到2030年中国将会有 3100万的脑卒中病人。。脑卒中病人由于肌力及肌张力异常,平衡及协调能力受限,从而严重影响病人的步行功能。研究表明,40-73%的居家脑卒中病人发生跌倒,比健康人群跌倒风险增加4倍,髋骨骨折风险增加10倍。因此,帮助脑卒中病人恢复行走能力是脑卒中康复的工作核心,而步态作为直接反映行走能力的重要指
武汉大学 2021-01-12
首页 上一页 1 2
  • ...
  • 49 50 51
  • ...
  • 307 308 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1