高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
电子科技大学电磁环境仿真及智能处理平台采购项目竞争性磋商
电子科技大学电磁环境仿真及智能处理平台采购项目竞争性磋商
电子科技大学 2022-05-27
聚丙烯酸酯微球及其应用
中国发明专利ZL2023104389499:采用高内相乳液模板法制备20-100微米的聚丙烯酸酯实心或多孔微球,可应用于吸附剂、药物香精载体或粉末涂料;制备简便、绿色环保且产率较高,基本无排放。
厦门大学 2025-02-07
高可靠忆阻器件及其视听觉传感应用
        技术成熟度:技术突破         传统CMOS工艺的图形处理器通常是由探测、存储、处理等多个分立系统构成,不可避免的增加了集成电路的复杂性、功耗和成本,忆阻器在新型信息存储器件、存算一体化技术及人工神经网络等领域有着巨大应用潜力。         研发团队发展的感存算一体化新型光电忆阻材料与器件能够解决传统人工视听觉系统在容量、集成度、速度等方面的技术瓶颈问题,是实现高效智能视听觉传感系统的基础。研发团队首次在基于氧化钨材料忆阻突触器件的视听觉系统中模拟了速度检测的多普勒频移信息处理,进而实现高通滤波和处理具有相对时序和频移的尖峰数据。这些结果为视听觉运动感知的模拟提供了新机会,促进了其在未来神经形态传感领域的应用。         意向开展成果转化的前提条件:中试放大及产业化工艺开发资金支持
东北师范大学 2025-05-16
北京维意真空技术应用有限责任公司
北京维意真空技术应用有限责任公司,原名北京科立方真空技术应用有限公司,创立于2013年6月,主体经营分为真空配件销售、真空设备定制、浅蓝纳米科技三个部分,是北京从事真空产品设计、制造、销售、维修、保养于一体的性的公司,公司拥有一支、产品技术工程师和维修技术工程师,具有丰富的行业经验。        公司于2016年初至2017年末,陆续投入大量研发资金,针对等离子增强化学气象沉积设备、原子层沉积设备和高低温真空探针台设备,以及附属配件进行了系统、深入的研发、改进工作。竭尽所能满足高校、研究所的教学、科研使用,同时减少相关进口设备的市场占有率,并力争创造外汇,打出中国创造的名牌!        我们的客户遍布国内各高校和研究院所、部分军工单位和电力试验所、各级的材料、物理、化学、纳米等研究领域的实验室,期待您就是我们的下一位客户、朋友!        您的满意微笑是我们一直努力追求的经营目标!        维意真空,为您服务,唯你成就是我们的宣传口号!        技术创新、服务诚信是我们一直遵循的经营理念!        我们热诚欢迎国内外先进的仪器制造商及科学工作者与我们联系开展各层面的合作,打造成的真空系统产品、等离子体增强化学气相沉积设备、原子层沉积设备和高低温真空探针台设备供应商。
北京维意真空技术应用有限责任公司 2025-04-25
2-氟代苯胺喹唑啉类肿瘤正电子显像剂及制备和应用
本发明提供一种F-18标记的2-氟代苯胺喹唑啉化合物,由回旋加速器通过18O(p?n)18F核反应生产18F,通过放射合成模块进行自动化合成,也可以通过现有的国产F-18多功能合成装置经流程改造后进行生产。本发明是2位正电子核素氟-18取代的苯胺喹唑啉结构,可以在6位,7位,以及与氨基相连的苯环上进行修饰。本发明提供了一类新型肿瘤正电子显像剂,与18F-氟代脱氧葡萄糖(18FDG)相比较,该类显像剂有特异性,可以识别那些表皮生长因子(EGFR)高表达肿瘤。制备方法设计合理,标记方法简单,可以实现自动化生产,适于实用。本发明结构通式如下:。
浙江大学 2021-04-13
一种电力线通信系统的噪声预测方法
成果描述:本发明申请要解决的问题是,改进预测技术,提高预测准确度。本专利利用高阶马尔科夫模型的原理提出HM-gMTD模型的一种改进,即高阶HM-gMTD模型,并通过EM算法给出相应的参数估计方法和相应的计算方法,并能够快速进行参数估计,以提高模型预测的准确度。市场前景分析:预测模型的发展在人类的经济生活方面发挥着重要的作用,尤其是马尔科夫模型,几乎在各个领域都有着非常广泛的应用。本发明着重混合转移分布模型与高阶隐马尔科夫模型的巧妙结合,构造出高阶HM-gMTD模型,然后运用EM算法,对新模型实现了主要参数的求解。最后为了衡量一个模型的好坏和对不同的模型进行比较,我们选择准则函数。模型比较的最佳准则函数,既考虑到模型对原始数据的拟合程度,又兼顾模型中所包含的待定参数的个数,并且对二者做出合理的权衡。与同类成果相比的优势分析:本发明主要是针对HM-gMTD模型的进一步改进,提出一个高阶HM-gMTD模型,使其在降低计算的复杂度的同时,提高预测的准确性。
电子科技大学 2021-04-10
卫星与无线通信融合系统研发及产业化
成果介绍“卫星与无线通信融合系统研发及产业化”就是由东南大学、南京中网卫星通信股份有限公司和江苏大学三家单位合作完成。卫星通信具有覆盖广和不受地域限制的优势,但是受到遮挡以后,信号就会不好,而且通信的成本太高,2M带宽每小时就要花费几千元。而随着3G、4G的普及,地面无线通信已经发展得相当完善,但是在地面基站未覆盖区域,或基站一旦受到洪水、台风、地震等自然灾害破坏时,就无法通信了。正是基于这两个通信系统的特点,我们‘取长补短’,巧妙地将两种通信系统融合起来,研制完成的系统可以根据不同策略自适应地选择地面通信链路或卫星链路”技术创新点及参数他和团队成员克服了很多困难,提出了多项独创性的方法,目前已申请国家发明专利40项(其中24项已经获得授权),编制国家标准3项,发表国内外核心期刊论文61篇(其中SCI收录16篇)。项目研制的卫星与无线通信融合系统实现了规模产业化,部分性能指标处于国际领先水平,并在气象、安监、环保和军队等诸多行业得到极其广泛的应用,得到了政府有关部门和客户的一致好评。市场前景目前本项目的产品已经应用到全国26个省市的18个行业。其中,气象和安监市场占有率达到70[%],环保市场占有率达到60[%]。产品曾为“神舟系列”飞船的发射和回收提供气象保障,为汶川地震、雅安地震和甘肃舟曲特大泥石流等提供了应急通信服务,为上海世博会和深圳大运会等重大活动提供了气象保障和视频直播服务。产品已经实现直接销售收入8.3亿元,产生的间接经济效益数百亿计。
东南大学 2021-04-11
水下蓝光通信系统及亚波长垂直结构LED
本项目产品属于无线通信技术领域,基于可见光通信技术,设计开发了一种海陆空全覆盖的高速通信产品,本产品能够在射频信号可以或不可以到达的场景下实现远距离、低延时的高清音视频或大容量数据的传输,提出了面向国家海洋战略、民用监测技术的全新通信解决方案。 产品简介:我们的可见光通信系统是一种新兴的空间无线通信设备,它在隧道监测、矿道勘探、水下养殖环境监测和水下通讯等领域优势明显,将发挥重要作用。从技术层面来看,鉴于光波频段大的天然优势,它的频段资源是无线电的100多倍,完全可以弥补如今无线电资源匮乏的问题;从实际应用上来看,光在黑暗环境与水中受外界影响小,抗干扰能力强,可以解决所有无线电与声波无法到达的地方的通信问题,并且传输速度比声波快上数百倍;从安全性来说,光波具有良好的方向性,当光信号被第三方拦截时,接收方能及时发现通信链路故障,更加易于保密。 技术壁垒:自主研发设计的水下可见光通信系统,水下实际传输速度可达1Mbps以上,支持音视频、大量传感信息实时传输,相比市场其他同类产品,碾压式的“高速”是我们的核心竞争力。并且,本产品采用自主研制的高性能垂直结构LED,也是目前世界上已报道的最薄垂直结构LED,完美解决了散热高、出光效率低的问题。拥有相关自主知识产权的授权专利20余项,做到了“国际一流,国内领先”的水平。 市场行情:反观近年来的市场行情,高亮度照明LED的推广和普及为可见光通信技术创造了重大发展机会。日本启动的“21世纪照明计划”、美国能源部的“下一代照明计划(NGLI)”以及欧盟的“彩虹计划”,都极大推动了LED照明市场在全球规模的迅速增长。中国跨部委的半导体照明工作小组启动了“国家半导体照明工程”。随着LED性能的不断提升,可见光通信作为空间无线通信技术的一种,将扮演越来越重要的角色。
南京邮电大学 2021-05-11
一种新型模分复用光纤通信系统
一种基于折射率渐变型环芯光纤的模分复用光纤通信系统
中山大学 2021-04-10
城市交通信号自组织控制装备开发
此项目具有面向城市交通信号控制装备的“软件和信息服务业”特征的技术属性。即城市交通信号自组织控制理论与装备开发技术。 为解决传统自上而下的城市交通信号控制方法带来的理论难题(如图所示): (1)动态特性的非线性、 (2)状态参数的时变性、(3)系统边界的开放性、(4)动力系统的高阶性、(5)相邻路口的耦合性、 (6)信号控制的实时性等系统属性,造成的无法实现实时性控制的难题。 为此,针对具有复杂系统特征的城市交通信号控制问题,项目在国内首次提出“城市交通信号自下而上自组织控制理论”(如图2所示)。即通过赋于相邻路口的自组织属性,可大幅度减少其控制系统自由度和复杂性。在快速、实时控制的假设前提下,使其信号控制由原来的开放性、大自由度、不确定性问题,改变为非开放性、小自由度、确定性问题。
同济大学 2021-02-01
首页 上一页 1 2
  • ...
  • 103 104 105
  • ...
  • 573 574 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1