高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
环糊精的高效制备技术
环糊精具有内腔疏水而外部亲水的中空立体结构,能够通过包合作用显著改善客体分子的理化性质,在食品、医药、化妆品等众多领域具有广阔的应用前景。随着环糊精应用范围的不断拓展,近年来环糊精产量一直保持 20%~30%的增长。然而环糊精生产过程中存在专用酶功能性差(热稳定性差、产物特异性低、 产物抑制强)、底物转化率较低、生产工艺流程繁琐等问题,导致环糊精价格偏高,严重制约了相关产业的发展。本技术通过筛选高产环糊精专用酶的菌株,构建环糊精葡萄糖基转移酶胞外表达系统,结合助剂添加、工艺优化等手段,实现环糊精的高效制备,推动我国环糊精生产行业快速升级。
江南大学 2021-04-13
纤维素高效水解技术
由木质纤维素原料水解并发酵制得的乙醇是一种重要的可再生能源;纤维素水解到一定聚合度所得微晶纤维素可用于食品、医药、皮革及造纸等行业,应用范围广泛。然而现有水解方法消耗大量的化学试剂且水解选择性很低,造成可发酵糖得率和微晶纤维素产率均不高,成为纤维素利用技术进一步发展的瓶颈。本成果开发了一种化学改性的方法改变纤维素的结构,提高纤维素的水解效率。所得水解液可用于燃料乙醇生产,所得固体可用于制备纤维素材料。 关键技术 (1)纤维素水解可发酵糖得率提高。 (2)一步法获得改性纳米纤维素材料。 知识产权及项目获奖情况 (1)授权专利 一种提高纤维素水解效率的方法 ZL201110154930.9 一种提高纤维素水解效率的方法 ZL201210438249.1328 一种提高稻草水解效率的方法 ZL201310468580.2 一种纤维素改性剂的合成方法 ZL201310468666. (2)项目获奖 获得陕西省科学技术二等奖。 项目成熟度 部分工艺已中试。 投资期望及应用情况 成果可在生物质能源及生物质材料领域推广应用。
江南大学 2021-04-13
热压合成新一代镁阿隆-氮化硼(MgAlON-BN )复合耐火材料
MgAlON 便是氧氮化物中的一种。因其具有优异的物理化学性能,因而具有良好的应用前景。但是仍然有很多性能尚未研究。类石墨结构的六方 BN 具有优异的抗熔渣和金属的侵蚀性能以及具有优良的抗热震性能,从而在高金属陶瓷及耐火材料中得以广泛应用。利用热压工艺合成的新一代 MgAlON-BN 复合耐火材料,综合了 MgAlON 和 BN 的优点,材料的抗折强度、断裂韧性、密度及硬度等力学性能,特别是高温抗折强度得到提高,抗铁液侵蚀性能好。MgAlON-BN 复合材料还可以作为高级陶瓷、功能陶瓷应用。该课题在国家自然科学重点基金的资助下,对 MgAlON 及 MgAlON-BN 复合材料的热学性能,包括热膨胀系数、热扩散系数、热导率等,MgAlON 及 MgAlON-BN 复合材料与金属和渣的润湿性能等进行了系统的研究。取得了一系列具有自主知识产权的新配方、新工艺,拥有 3 项国家发明专利,2006 年获得教育部二等奖,2005 年获北京市科学技术二等奖。MgAlON-BN 复合材料不但可在冶金工业连铸生产过程中的侵入式水口、连铸水平分离环上使用,同时有望作为其他高性能陶瓷如高级陶瓷、功能陶瓷来使用。
北京科技大学 2021-04-13
热压合成新一代镁阿隆-氮化硼(MgAlON-BN)复合耐火材料
MgAlON便是氧氮化物中的一种。因其具有优异的物理化学性能,因而具有良好的应用前景。但是仍然有很多性能尚未研究。类石墨结构的六方BN具有优异的抗熔渣和金属的侵蚀性能以及具有优良的抗热震性能,从而在高金属陶瓷及耐火材料中得以广泛应用。利用热压工艺合成的新一代MgAlON-BN复合耐火材料,综合了MgAlON和BN的优点,材料的抗折强度、断裂韧性、密度及硬度等力学性能,特别是高温抗折强度得到提高,抗铁液侵蚀性能好。MgAlON-BN复合材料还可以作为高级陶瓷、功能陶瓷应用。该课题在国家自然科学重点基金的资助下,对MgAlON及MgAlON-BN复合材料的热学性能,包括热膨胀系数、热扩散系数、热导率等,MgAlON及MgAlON-BN复合材料与金属和渣的润湿性能等进行了系统的研究。取得了一系列具有自主知识产权的新配方、新工艺,拥有3项国家发明专利,2006年获得教育部二等奖,2005年获北京市科学技术二等奖。 MgAlON-BN复合材料不但可在冶金工业连铸生产过程中的侵入式水口、连铸水平分离环上使用,同时有望作为其他高性能陶瓷如高级陶瓷、功能陶瓷来使用。
北京科技大学 2021-04-13
一种硼、氮共掺杂下有机固废余辉碳点及制备方法和应用
本发明公开了一种硼、氮共掺杂下有机固废余辉碳点及制备方法和应用,涉及有机固废水热转化技术。该方法是将生物质模型化合物和硼酸混匀,在微波辅助水热的条件下进行反应,之后依次进行离心、透析和冷冻干燥,形成预处理后的碳点;之后三聚氰胺作为外源氮源与预处理后的碳点以及去离子混合后进行水热反应,之后依次洗涤和真空干燥,即可得到目标产品。本发明提出了一种全新的通过有机固废制备余辉碳点的策略,在杂原子掺杂机制的作用下,通过两步水热法构筑碳点,优化掺杂与缺陷调控,实现了荧光向余辉发光的可控转换。
南京工业大学 2021-01-12
不锈钢管列置双TIG电弧高效低能耗焊接生产技术
广泛应用于汽车、锅炉及装备制造等行业的不锈钢焊管是我国钢铁行业重点发展的高端不锈钢精品深加工产品,其由钢带卷制成管而由钨极氩弧焊接(TIG)而成,但在高速焊接生产过程中会出现咬边和驼峰焊道成形缺陷,成为不锈钢管高效焊接生产的技术“瓶颈”和行业技术发展的堵点、难点。基于此,通过研究揭示不锈钢管TIG焊接生产提速后出现的咬边、驼峰焊道表面成形缺陷形成机理,提出利用辅助TIG电弧对熔池进行热力联合调控抑制高速TIG焊接过程中咬边和驼峰焊道的形成,发明了列置双TIG电弧(Tandem TIG)高效低能耗焊接工艺,将咬边和驼峰焊道缺陷防止在萌芽状态;与单TIG焊相比,焊接速度提高1倍以上,能耗降低20%以上,很好地解决了焊接高质量和高效率难平衡的问题;开发了钨极烧蚀在线监测系统和不锈钢管在线固溶热处理系统,实现了不锈钢管高效、低能耗、低成本焊接生产,提升了不锈钢焊管行业技术水平。在此基础上,基于相同热力调控理念开发了TIG电弧辅助MIG/MAG电弧高速焊接工艺,焊接速度提高75%。项目累计授权发明专利5件,制定团体标准2项,工信部认定节能技术1项,获中国专利优秀奖等科技奖励6项。项目成果推动和引领不锈钢焊管生产向高效、低能耗方向发展,具有显著的技术优势和应用前景。 (a)工艺原理 (b)列置双TIG电弧和熔池图像 图1 列置双TIG电弧高速焊接工艺原理 (c)铁素体不锈钢焊管 (d)奥氏体不锈钢焊管 图2 不锈钢管列置双TIG电弧高速焊接生产 图3 钨极烧损在线监测系统 图4 奥氏体不锈钢管高速焊接生产过程中在线固溶热处理工艺流程
山东大学 2025-02-08
辣椒疫霉病菌几丁质合酶及其基因和应用
本发明涉及辣椒疫霉病菌(Phytophthora capsici)中的几丁质合酶。其氨基酸序列为与如SEQ ID No.4所示的氨基酸序列在相似性在90%以上,优选在95%以上,更优选在98%以上且具有与如SEQ ID No.4所示的氨基酸序列相同功能的氨基酸序列。所述辣椒疫霉病菌的几丁质合酶的活性水平能够调节活性孢子囊和活性游动孢子的产量从而影响辣椒疫霉病菌的致病力或寄主的发病程度。
中国农业大学 2021-04-11
花生维生素C合成相关基因AhPMM及其应用
本发明提供了花生维生素C合成相关基因AhPMM及其应用,将该基因在花生中超量表达后,得到总维生素C和还原态维生素C(AsA)含量显著提高的转基因植株。实验证明,将本发明的AhPMM基因超量表达可显著提高花生叶片的维生素C含量,且对花生的正常生长没有明显的影响。本发明的蛋白及其编码基因对于植物维生素C合成机制的研究,以及提高植物的维生素C含量的改良和抗逆性具有重要的理论及实际意义,应用前景广阔。
青岛农业大学 2021-04-11
关于基因转录调控相分离新机制的发现
研究揭示了转录抑制子与DNA形成液液相分离的新机制。作为遗传信息的载体,DNA在细胞中被紧密组装在不同的染色质结构域中,而如何调控这些染色质结构域的组装,从而控制基因的转录仍然是未解之谜。生物大分子的相分离现象是指蛋白质及核酸等分子通过多价相互作用在细胞中形成无膜包裹的细胞器,在大分子结构组装、功能调控和信号转导中发挥着重要的作用。该研究工作发现拟南芥转录抑制子VRN1与DNA形成液液相分离,揭示了相变的分子机制,为理解转录抑制子调控染色质结构变化和基因转录调控提供了全新的视角。
北京大学 2021-04-11
新型全脑大范围基因治疗给药技术
已有样品/n高效跨血脑屏障及神经轴突逆行的腺相关病毒(AAV)载体,为大脑给药技术带来了突破契机,但满足临床基因治疗的需求仍有显著差距。中科院武汉物数所已建立了上述两类新型AAV病毒的改进系统以及高效的规模化制备系统,大幅提升脑部大范围给药效率,对治疗神经精神疾病具有重要意义。目前已建立了十大类针对神经系统的表达基因的工具病毒系统;建立了293及昆虫杆状病毒系统的规模化制备系统。
中国科学院大学 2021-01-12
首页 上一页 1 2
  • ...
  • 22 23 24
  • ...
  • 101 102 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1