高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种测定钙系包芯线中金属钙含量的方法
本发明公开了一种快速测定钙系包芯线中金属钙含量的方法。 在常温常压下,利用 NH4Cl 溶液为溶样试剂、高纯金属镁或金属钙为 标准,采用气体容量法及相关装置,测定金属镁或金属钙标样及待测 样品在相同实验条件下产生氢气的体积,根据气体状态方程,通过比 较法计算出钙铁包芯线中金属钙的含量。本发明方法不仅适用于不同 含钙量的钙铁包芯线中金属钙的测定,还适用于不同含钙量的铝钙包 芯线、硅钙线等钙系包芯线中金属钙的测量。本发明
华中科技大学 2021-04-14
羧甲基海藻糖季铵盐吸湿保湿剂产品开发
可以量产/n海藻糖季铵盐为白色结晶或粉末,易溶于水或醇,在相对湿度为81%、43%、硅胶中、空气中的吸湿保湿活性要比透明质酸高10-30%。海藻糖季铵盐具有很好的水溶性与脂溶性,可以在化妆品领域作为高端吸湿保湿剂进行应用。本项目由海藻糖与环氧丙基三甲基氯化铵在异丙醇中反应制备海藻糖季铵盐,所使用的海藻糖与环氧丙基三甲基氮化铵都为化妆品级,所得产物经过处理后得到固体海藻糖季铵盐,经过气质联用分析,没有中间过程中参与反应的异丙醇等残留。通过检测,所制备的海藻糖季铵盐新化合物中铅、镉、汞、砷等重金属离子的
中国科学院大学 2021-01-12
D—泛酸钙合成工艺研究
D-泛酸钙[N-(2,4-二羟基-3,3-二甲基丁酰)-β-氨基丙酸钙]属维生素类物质,作为人体和动物体内辅酶A的构成成分,主要作用是参与生物体内蛋白质、脂肪、糖类的代谢,广泛用于医药、食品和词料工业。 医药方面,D-泛酸钙作为药物,主要用于维生素B缺乏症及神经炎,手术后肠绞痛,辅助治疗红斑狼疮,此外还用于制造其他药物。食品方面,鉴于D-泛酸钙具有补充生物体内维生素B需求和增强食品风味两方面的功效,用作各种保健食品的营养增补剂。词料工业方面,D-泛酸钙主要用作猪鸡鸭、鱼等畜禽词料添加剂,防治动物因缺乏泛酸所引起的皮肤粘膜病变、发炎,肠道和呼吸道疾病,生殖机能紊乱,耐紧张能力降低,猪患鹅步病,家禽产蛋量低、胚胎死亡率高等。由于国内养殖业发展很快,加之D-泛酸钙在体内形成的活性代谢物泛酸是生物体自身成分,无毒性物质残留,是国际公认的一种绿色词料添加剂。工艺特点:工艺原料易得,来源广泛,立足国内; (1)本工艺反应条件温和,无高温、低温和高压等苛刻要求,因而对设备无特殊要求; (2)本工艺回收利用较完全,故成本较低; (3)本工艺“三废”主要是生产过程中产生的含氰废水,但可利用蒸馏—生物接触氧化塔处理工艺,使工艺废水达到国家排放标准; (4)本工艺采取先拆分、后酰胺化方法,产品质量较高,可达到出口标准,直接创汇。
武汉工程大学 2021-04-11
聚丙烯酸酯微球及其应用
中国发明专利ZL2023104389499:采用高内相乳液模板法制备20-100微米的聚丙烯酸酯实心或多孔微球,可应用于吸附剂、药物香精载体或粉末涂料;制备简便、绿色环保且产率较高,基本无排放。
厦门大学 2025-02-07
纳米纤维基凝胶电解质
凝胶电解质具有电导率高,界面电阻小,安全性高,稳定性好等优势,有望替代传统锂金属电池液体电解液,解决锂金属电池的电解液泄露、高温胀气、锂枝晶等安全问题。 纳米纤维具有纤维直径小、比表面积大、孔隙率高、柔软、耐高低温及有机溶剂腐蚀等特点,保证纳米纤维锂离子电池凝胶电解质具有很强的吸液和保液能力。纳米纤维作为凝胶电解质支撑层不仅保证具有足够的吸收聚合物液体的能力,而且保证电解质的柔性,为可穿戴电子设备提供柔性电源。
北京科技大学 2021-02-01
轻质高强隔热聚酰亚胺气凝胶
气凝胶是一种有着纳米多级结构的特殊多孔材料,由于其独特的结构和诸多优越的性能,在许多领域有着广泛的应用前景。目前制约其工业化生产和应用的最大瓶颈就是其极差的力学性能,因此获得高模量的气凝胶是研究人员一直以来努力的目标。聚酰亚胺气凝胶作为一种力学性能较好,热稳定性高,隔热性能好的有机气凝胶近年来受到人们的广泛关注。通常线性聚酰亚胺气凝胶是通过等摩尔的初始单体二酐和二胺合成,其主要缺点在于样品收缩大,热、力学性能差强人意。收缩大是聚酰亚胺气凝胶制备过程中较难解决的问题,较大的收缩导致气凝胶的密度一般较高。由于隔热材料的热导率这一性能和材料的密度是紧密相关的,通常密度低意味着隔热效果更好,因而降低聚酰亚胺气凝胶的密度是提升其隔热性能的有效手段。同时,较低的密度也会导致材料的模量下降,影响其力学性能。所以,获得低密度、高模量,也就是高比模量的聚酰亚胺气凝胶是正真提升其应用价值的核心问题。相较之下,交联型的聚酰亚胺气凝胶有着更为优异的性能,这是由于在其凝胶网络中引入了某些功能化的胺类,也叫交联剂。交联剂的引入使得聚酰亚胺聚合物链通过共价键进行结合,形成丰富的三维网络结构,可以极大降低样品的密度和热导率,同时提升其热、力学性能。然而,交联剂的售价异常昂贵,或是需要通过复杂的合成工艺获得,这一瓶颈极大地限制了交联型聚酰亚胺气凝胶的大规模生产和应用。因此,采用更为廉价易得的交联剂获得低收缩、低密度、低热导的聚酰亚胺气凝胶成为研究学者们亟待解决的一个难点。本团队的相关科技成果提供了一种适用范围广、成本低廉、反应周期短、可能工业放大的低密度、高模量交联型聚酰亚胺气凝胶材料的制备方法以及一种适用范围广、成本低廉、反应周期短、可能工业放大的低密度交联型聚酰亚胺气凝胶类材料的低成本制备方法。 聚酰亚胺气凝胶作为一种力学性能较好,热稳定性高,隔热性能好的有机气凝胶近年来受到人们的广泛关注。该技术研制了一种适用范围广、成本低廉、反应周期较短、可能工业放大的交联型聚酰亚胺气凝胶材料的制备方法。
同济大学 2021-02-01
轻质高强隔热聚酰亚胺气凝胶
高校科技成果尽在科转云
同济大学 2021-04-10
纳米纤维基凝胶电解质
凝胶电解质具有电导率高,界面电阻小,安全性高,稳定性好等优势,有望替代传统锂金属电池液体电解液,解决锂金属电池的电解液泄露、高温胀气、锂枝晶等安全问题。纳米纤维具有纤维直径小、比表面积大、孔隙率高、柔软、耐高低温及有机溶剂腐蚀等特点,保证纳米纤维锂离子电池凝胶电解质具有很强的吸液和保液能力。纳米纤维作为凝胶电解质支撑层不仅保证具有足够的吸收聚合物液体的能力,而且保证电解质的柔性,为可穿戴电子设备提供柔性电源。纳米纤维凝胶电解质具有以下优势:1)具有足够的化学和电化学稳定性,有一定的耐湿性和耐腐蚀性;纳米纤维凝胶电解质膨胀收缩现象不明显,小于 5%,电化学稳定窗口在 0-5 183 / 298V,满足锂离子电池使用要求,甚至为高压正极材料提供保证。2)对电解液润湿性好,有足够的吸液保湿能力;纳米纤维高的孔隙率,且大部分孔都是连通孔,保证了凝胶电解质与电极之间良好的浸润性,增加了离子导电性,提高电池的容量,改善电池的充放电效率和循环性能。3)高低温性能优异,电导率高;电池的使用温度范围通常在-20-60 ºC,商用 PP 膜在 100 ºC 保持 10 min 收缩率达 10%,但纳米纤维隔膜在 140 ºC 下横向和纵向收缩率<2%,在 50 ºC 高温条件下,相比于商用隔膜循环小于 100 次,纳米纤维隔膜在循环 300 次后容量保持在 83.5%。4)具有一定的抗张强度和抗刺穿强度;纳米纤维膜的垂直拉伸强度>3.035 N,避免了凝胶电解质被锂枝晶刺穿,发生短路,提高安全性。5)成本低,适用于大规模工业化生产;我们从设备到工艺已实现自主研制和开发,静电纺纳米纤维膜已实现大规模生产。
北京科技大学 2021-04-13
空气净化用气凝胶材料
针对气体中有毒有害污染物的去除,开发了一系列氨基改性气凝胶作为气体中固相和气相污染物的去除,包括氨基杂化SiO2气凝胶、氨基杂化TiO2气凝胶、氨基杂化ZrO2气凝胶和氨基杂化有机/无机复合气凝胶。氨基杂化气凝胶的制备采用自催化一步溶胶-凝胶工艺,其合成工艺简捷、且不需要加入酸/碱催化剂,相对于传统的气凝胶制备工艺,该工艺更安全、环保、成本更低。氨基杂化气凝胶对空气中的固相和气相污染物有良好的去除效果,大大优于传统的活性炭、P25、HEPA等材料。
南京工业大学 2021-01-12
智能水凝胶的合成及其应用
水凝胶是交联高聚物在水中溶胀所形成的体系,它在工农业生产、日常生活 及医疗领域具有广泛的应用。例如在医用材料领域可以用于药物缓释载体、组织 工程材料、栓塞微球、皮肤伤口敷料、手术防粘剂、降温冰袋等用途。合成所用 原料是天然产物,例如海藻酸钠、透明质酸、壳聚糖、纤维素及改性淀粉等,也 可以用小分子单体进行合成。 本团队长期进行水凝胶的研究和产品开发,合成了各种类型的水凝胶。我们 可以根据用户实际需要进行各类水凝胶产品的设计和制备,优化合成工艺,解决 用户在制备和使用水凝胶过程中碰到的技术问题,对产品性能和质量进行控制, 满足用户的要求。 技术特点:经济技术指标与应用效果:用天然材料制备水凝胶,产物具有优 异的生物相容性和降解性,成本低廉,产品附加值高。 2、创新要点: 采用了现代先进合成方法、包括纳米材料制备技术,所得水凝胶产品具有优 异的环境响应性和适宜的力学性能及热性能。 3、效益分析: 医用材料具有巨大的市场,本项目投资与规模:可根据用户需要确定。 4、推广情况 合作方式:技术开发;提供技术服务。
江南大学 2021-04-13
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 52 53 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1