高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
功能结构一体化3D打印创新设计
随着制造技术的快速发展,针对复杂结构件设计的需求日益广泛。改变传统的零件设计模式,将创新型设计方法与增材制造技术相结合,开展面向功能构建的创新设计,实现“结构—功能-材料”一体化,在设计阶段提升产品的功能、材料性能和降低成本,是充分挖掘增材制造的潜能,提升增材制造产业化价值的关键,是企业产品升级变革的重要手段和方法。 本项目突破集有限元分析、拓扑优化、晶格造型、力学设计、工艺约束、美学设计于一体的集成创新设计方法,充分利用晶胞的单元构造、堆积密度及空间分布直观地表达复杂产品结构件的材
南京理工大学 2021-04-14
一种适用于多材质工件的 3D 打印设备
本发明公开了一种适用于多材质工件的 3D 打印设备,其包括三 维运动结构、工作台、转盘式喷头切换装置、供料系统和控制系统, 三维运动结构包括 X 轴、Y 轴和 Z 轴运动结构;工作台与 X 轴运动结 构固定连接,其在 X 轴运动结构和 Y 轴运动结构的驱动下作水平运动, 在 Z 轴运动结构的驱动下作上下运动;转盘式喷头切换装置包括转盘 和电机;转盘周向上安装有多个分段式螺杆喷头装置,其在电机的带 动下实现旋转切换;供
华中科技大学 2021-04-14
一种面向高低温组合的生物3D打印喷头
本发明公开了一种高低温组合的生物3D打印喷头,具有加热与冷却装置,可以实现多种温度的精确控制,喷头包括外壳体、导热块、加热棒、冷却片、散热片、风扇、针筒、导热块上挡板、导热块下挡板、旋盖和针头。本发明的在导热块中装有加热棒与针筒,通过加热棒可以对针筒内的材料进行加热;同时,导热块的一个外表面贴有冷却片,冷却片与散热片和风扇相连,可以对针筒内的材料进行冷却处理。这样,一个喷头便可实现对材料不同温度的打印,简化了喷头的架构,降低了成本。
浙江大学 2021-04-13
汽车行业3D打印解决方案(工装夹具类产品)
清锋3D打印|汽车行业解决方案(工装夹具类产品) 清锋科技专注于将3D打印解决方案推向规模化生产,其自主研发整套工业级增材制造整体解决方案已经完成量产化印证。通过简化生产工艺、降本增效、提供个性化定制等服务,汽车行业3D打印配件大规模生产提供解决方案。 索要完整解决方案资料请访问 3D打印汽车行业解决方案(luxcreo.cn)下载   一、 材料选择 基于模型、工况、韧性材料性能做力学仿真,筛选合适的材料(TM系列韧性材料)     二、晶格化处理,精准把控基于模型、工况、韧性材料性能做力学仿真调整 清锋拥有行业厂商鲜有的增材设计软件——LuxStudio,可实现模型自动晶格化生成与参数化设计优化。通过对3D打印模型功能件进行大量的参数化设计优化和仿真,调整不同数据,改变不同区域的密度,甚至晶胞的类型,用数字化的方式让3D打印模型功能件达到客户认可的功能属性。 LuxStudio(登录地址:https://studio.luxcreo.cn)     三、 高分子材料自主研发TM系列韧性材料(光敏树脂) 清锋拥有自主研发、全球级专利的TM系列韧性材料,在高韧性、低收缩率和高冲击强度等方面有着异常突出的力学性能,在工装夹具和汽车内外饰等快速原型高韧性应用场景都有着不错的表现。   TM 79 韧性材料资料下载:https://www.luxcreo.cn/material/1?SelectID=Mg%3D%3D&toughnessNavId=MA%3D%3D   四、快速打印验证,自由灵活,可根据实际使用需要调整夹具性能 1、快速打印测试LEAP极速3D打印机Lux 3+、Lux 3Li+系列和iLux Pro 清锋的3D打印鞋制作通过数字化产线将概念1:1复刻,且无需开模利用在线仿真可完成对3D打印模型功能件性能的初步测试,同时清锋自研LEAP™极速3D打印技术,可帮助企业进行快速开发,设计出来即可打印进行验证。 DLP光固化3D打印机Lux 3+ Lux 3+是清锋自主研发的【面向直接生产】的高速DLP光固化3D打印机,适用于功能性产品的快速、高精度打样试制以及小批量生产;还可用于前沿创新领域,进行复杂结构功能件的快速打样验证,以及作为通用平台用于功能性光敏材料的研发。 也就是说,它既可以帮助企业快速将产品从概念导入市场,进行功能性产品的快速开发、验证测试、小批量生产,也可以作为教学科研专用,成为课堂及科研实验室的好帮手。 Lux 3+产品使用高品质4K DLP技术,已经在超过10万个不同结构的物件上进行了打印验证。搭配Lux 3+工业级应用解决方案,可根据客户及市场需求进行快速、灵活的产品迭代设计,同时满足批量化生产需求,大范围覆盖时尚消费、康复医疗、工业、汽车、教育科研等多个应用领域。 详细参数: 成型体积:293x165x380mm(XYZ) 离型膜:连续液面高效成型LEAP™(全球专利) 搭配材料(自主研发):高弹性树脂EM⁺23、韧性树脂TM 79、耐高温树脂HT 32、透明树脂DSG 07 应用领域:鞋部件、坐垫、护具等弹性缓冲应用,电器外壳、工装卡夹、透明液压阀、汽车内饰等工业应用,注塑模具、航空航天等。 DLP光固化3D打印机Lux 3+资料下载 https://www.luxcreo.cn/printer/Lux3+?SelectID=MQ%3D%3D   2、 智能工厂批量化生产 清锋智能工厂的柔性制造生产颠覆了传统产线的生产模式,不仅可以进行产品设计、生产的全流程开发制造,也可以应对客户不同规模的生产,例如大规模产品的研发及批量生产、小规模产品的研发制造、以及客户自主研发产品的批量化生产需求都可以在清锋得到满足。     快速满足定制化需求,缩减时间、资金成本 使轻量化设计、生产工装夹具成为可能 按需生产,减少库存压力 自由灵活,可根据实际使用需要调整夹具性能     欢迎联系清锋科技咨询洽谈市场电话:18614034268   公司电话:010-63941626 公司邮箱:business@luxcreo.com 市场电话:18614034268 官方网站:www.LuxCreo.cn 公司地址:北京市海淀区建材城中路27号金隅智造工场S5幢   关于清锋科技(LuxCreo) 清锋科技(18600573362)是一家专注于3D打印设备、软件、材料研发,致力于改变产品开发和生产方式的数字化3D智造商。团队成员汇聚了清华大学、哈佛大学、佐治亚理工学院、宾夕法尼亚大学、剑桥大学等学府的高端技术人才和高管人才。团队研发出适配于不同行业的高性能材料体系(弹性体材料、韧性材料、齿科材料、耐高温材料等),依托自主研发的Lux系列DLP光固化3D打印机、iLux Pro系列LCD桌面级光固化3D打印机和配套软件, 为鞋类、齿科、医疗、消费、汽车、工业、科研高校等行业创新升级提供解决方案,打造兼具定制化和批量化的新型数字化制造模式及生态闭环,让制造更简单!www.LuxCreo.cn    
清锋(北京)科技有限公司 2022-11-03
基于激光散射的空气污染物微粒测量仪
近些年,工业发展导致环境污染越来越严重,其中粉尘作为环境 恶化的重要污染源,严重危害着我们的生活环境和人们的身心健康。 因此,采取及时有效的措施对环境中的粉尘浓度进行检测,然后进行 除尘降尘,可有效提高人生安全系数和环境质量。 目前,现有的粉尘检测设备中,所用的传感器稳定性差,致使测量 精度不够高,且校准调节难度大,这也对产品的推广和后期维护带来 不便。课题组采用激光散射法在线监测粉尘浓度,并采用 3D 打印技术 设计系统总体及光路结构,采用串口通讯模块对系统进行了数据校准 及稳定性分析,测量精准度高。
南开大学 2021-04-11
基于激光测振技术的建筑幕墙安全状态远程检测方法
建筑幕墙是由支承结构体系与面板组成的、可相对主体结构有一定位移能力、不分担主体结构所受作用的建筑外围结构或装饰性结构,包括玻璃幕墙、石材幕墙和合金幕墙等,并被广泛应用于高楼大厦、机场、高铁车站等公共设施。随着服役年限的增加,近些年来建筑幕墙因面板脱落造成的事故屡见不鲜,严重威胁着人们的生命财产安全。因此,建筑幕墙实施有效的检测是实现幕墙安全管理、预防灾害发生的重要前提。当前幕墙安全状态检测的手段主要有:目测法、手试法、振动传感器法等,目测法和手试法需要作业人员通过攀爬等手段靠近检测对象实施检测,且检测结果受检测人员个人经验影响较大。振动传感器法因传感器的安装困难、需要额外激振、附加质量也对检测结果影响较大等原因实际应用价值较小。 本项成果提供了一种基于激光测振技术的建筑幕墙安全状态的无损检测方法。该方法基于幕墙面板时常微动的特点进行幕墙安全状态检测,不需要提供额外激励,可远程、快速评价幕墙的安全状态,具有适用范围广、实用性强等特点。
北京科技大学 2021-02-01
航空航天轻合金大型复杂结构精准激光焊接技术
以大型薄壁结构双激光束双侧同步焊接(DLBSW)工艺与装备需求为牵引,开展高效激光焊接机理、技术、装备研究,突破了激光焊接微观热-力-冶金机理、形性一体化精准调控技术,形成了首套双激光束双侧同步焊接装备,完成了国内首个激光焊接火箭贮箱的研制。 技术特征 面向航空航天大型复杂曲面薄壁结构,提出了焊缝组织形态三维解构方法、面向微区缺陷与性能的组织形态重构与参数体系化设计方法;提出了智能化建模技术,形成了面向航空航天型号产品的虚拟焊接体系。
南京航空航天大学 2021-05-11
航空航天轻合金大型复杂结构精准激光焊接技术
以大型薄壁结构双激光束双侧同步焊接(DLBSW)工艺与装备需求为牵引,开展高效激光焊接机理、技术、装备研究,突破了激光焊接微观热-力-冶金机理、形性一体化精准调控技术,形成了首套双激光束双侧同步焊接装备,完成了国内首个激光焊接火箭贮箱的研制。技术特征面向航空航天大型复杂曲面薄壁结构,提出了焊缝组织形态三维解构方法、面向微区缺陷与性能的组织形态重构与参数体系化设计方法;提出了智能化建模技术,形成了面向航空航天型号产品的虚拟焊接体系。应用范围:已有合作与成效:(1)与中国商飞合作,完成C919机身壁板结构DLBSW仿真研究与样件研制工作;(2)与上海航天技术研究院合作,将DLBSW技术应用于火箭燃料贮箱结构,成果完成了国内首个激光焊接火箭贮箱的研制工作;(3)与航天一院合作,开展新一代载人火箭贮箱箱底焊接变形控制研究。后续推广:为将来重型运载火箭、大型宽体客机、战略运输/轰炸机、下一代战斗机制造提供支持。
南京航空航天大学 2021-04-10
飞秒激光脉冲制备硅基微纳结构光伏材料
太阳能作为一种洁净和相对易于获取的能源在未来的动力产品中将占有越来越大的比份。如何发展高光电能量转换效率、高可靠性和低成本的太阳能电池是目前太阳能利用领域所面临的关键问题。相对于第一代和第二代太阳能电池(转换效率<<50%),各国科学家纷纷研究不同的应用于第三代太阳能电池的新材料和新结构,目标是使光电转换效率大于5 0%。近年来,一种具有微、纳米量级特殊结构的光伏材料成为太阳能电池的研究热点。利用飞秒脉冲激光在极短的持续时间内激发出极大的峰值能量,其在硅片的相互作用过程中具有很强的非线性效应,聚焦烧蚀硅表面很小的一块面积,形成规则排列的微纳米结构。这种微纳米结构由于表面积增大,对入射光波有很大的吸收,且对光的敏感性提高了数百倍,这些性质对我们提高光电转换效率具有很大的指导意义。这种材料与本底未处理材料的性质相比,材料带隙减小,对光的敏感性提高了数百倍,这使得其对波长为250—2500 nm的入射光波有大于90%的吸收;另外,黑硅比传统材质的硅的比重低。这些奇特的光电和物理性质能进一步提高太阳能电池的光电转换效率。根据光吸收效率,激子光量子效率,化学电势效率以及填充因子计算总的光电转换效率,普通硅基太阳能电池光电转换效率只有1 5%,而基于微纳结构光伏材料的太阳能电池转换效率可望达到50%-60%。 针对国民经济可持续发展在太阳能光伏技术方面的重大需求,发展利用超短脉冲激光制备具有优异光电转化效率的微纳结构光伏材料的新方法,以及通过探测光伏材料中非平衡载流子的能带结构及微分负电导等特性,探知光伏材料的光电转换效率,从而筛选出转换效率较高的微纳结构光伏材料,最终在发展新型、高效太阳能电池的新原理和新技术方面取得创新性突破,为我国研发具有自主知识产权的高效第三代光伏电池打下坚实基础。
上海理工大学 2021-04-11
在片上微纳激光器精确集成领域的研究
北京大学“极端光学创新研究团队”发展了一种高精度的暗场光学成像定位技术(位置不确定度仅21 nm),并结合电子束套刻工艺,实现了片上量子点微盘激光器与银纳米线表面等离激元波导的精确、并行、无损集成。这种微盘-银纳米线复合结构同时具有介质激光器与表面等离激元波导的优势,因此不仅具有介质激光器的低阈值与窄线宽特性,而且具有表面等离激元波导的深亚波长场束缚特性。基于这种灵活、可控的制备方法,他们实现了片上微盘激光器与表面等离激元波导间多种形式的精确可控集成,包括切向集成、径向集成以及复杂集成,并且对量子点无任何加工损伤;进一步,通过同时集成多个片上微盘激光器与多个银纳米线表面等离激元波导,他们获得了多模、单色单模以及双色单模的深亚波长(0.008λ2)相干输出光源。这些高性能的深亚波长相干输出光源可以容易地耦合并分配至其它深亚波长表面等离激元光子器件和回路中。因此,这种灵活、可控的精确集成方法在高集成密度的光子-表面等离激元复合光子回路中具有重要应用,并且这种方法可以拓展到其它材料和其它功能的微纳光子器件集成中,为未来光子芯片的实现提供了一种可行的解决方案。  该工作于2018年5月发表在Advanced Materials上(Advanced Materials 2018, 30, 1706546),并以卷首插画(Frontispiece)的形式予以重点报道。文章的第一作者为北京大学物理学院博士研究生容科秀,陈建军研究员为通讯作者。该研究工作得到了国家自然科学基金委、科技部、人工微结构和介观物理国家重点实验室、量子物质科学协同创新中心和极端光学协同创新中心等的支持。 图1. 片上胶体量子点微盘激光器与银纳米线表面等离激元波导的精确、并行、无损集成。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 56 57 58
  • ...
  • 77 78 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1