高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
锌-空气燃料电池系统
1 成果简介 锌-空气燃料电池作为一种新型的燃料电池系统,用锌作能量来源,实现发电。锌-空气燃料电池具有如下特点: 与一般氢空气燃料电池比,成本低,不需要贵金属做催化剂; 与一般蓄电池比,不需要充电,可像加油一样快速补料; 与燃油内燃机比,燃料可再生,锌发电后变为氧化锌可通过电解得以还原; 环保安全,放进火里也不燃烧。 本研究组已研究开发出 200 瓦的 5 节燃料电池堆,其电流密度指标达到国际先进,证明了设计方案的可行性。利用该技术方案,依据功率需求可开发大小不等的锌-空气燃料电池系统。为产业化应用,接下来需要做的工作是设计产品构型、完善整体集成。 2013_8_1 上图 用于方案验证的锌-空气燃料电池系统 2 应用说明 锌-空气燃料电池可做军用电源,具有补充能量快、安全的优势;可配合风力发电、太阳能发电系统的大型储能-发电装置,为电网调峰补谷,具有安全、成本低优势;可作为未来电动汽车的动力电源,具有安全、价廉、不需要充电、续驶里程长等优势。 3 效益分析 量产的锌-空气燃料电池系统,制造成本与铅酸蓄电池相当,而使用寿命更长。 4 合作方式 联合开发。
清华大学 2021-04-13
燃料电池/超级电容混合动力有轨电车
本成果来自国家科技计划项目,获国家发明专利授权。该成果掌握并突破了燃料电池/超级电容混合动力有轨电车牵引和控制的一系列关键技术,在全球首次采用氢燃料电池/超级电容混合动力系统牵引驱动,真正实现二氧化碳与污染物的“零排放”。动力、储能、制动、轮轴、风挡铰接等大部分设备和车体均为国产,完全掌握了燃料电池控制、多源燃料电池混合动力系统能量管理、牵引网络控制等核心技术。在车辆控制、节能和安全技术等方面达到世界最高水平。研究工作仍在进行,已申报国家发明专利50余项。
西南交通大学 2016-06-27
微型燃料电池
本项目所涉及的微型燃料电池是燃料电池应用中最有市场前景的一个。微型燃料电池是指输出功率在100W以下,具有良好可携带性的小功率燃料电池。这类燃料电池能用于各类便携式用电设备、音像设备和计算机等信息产品。本项目以迅速地实现样机的制备、商品化以及大批量生产和高盈利为基本目标。项目进行过程中,将以现有的膜电极制备技术为基础,系列化开发、生产便携式电器使用的燃料电池。中期目标确定在不同类型的小型燃料电池,逐步以产品细分和增加产量提高市场份额。投资视市场实现情况,分期投入。本项目研究的目标集中在直接甲醇燃料电池的小型化、产业化与实用化上。在研究过程中,通过对电极结构、流场形状与内填充方案、整机设计、新型催化剂合成方案和电池性能衰减的研究,达到提高电池输出功率、抬高中电流密度区电位、缩小电池体积、实现初步产业化的目的。考虑到电池的可携带性、体积和工作条件,该类燃料电池拟采用本研究团队较为成熟的质子交换膜燃料电池技术为主,碱性燃料电池为后备方案进行开发。研究的重心将放在燃料电池核心部件——膜电极与整个电池系统的整合上,以达到提高电池输出功率、抬高中电流密度区电位、缩小电池体积、实现初步产业化的目的。
厦门大学 2021-04-11
纳米氢化镁燃料电池系统
上海交通大学 2021-04-11
复杂非线性滞后动力系统的分析与综合
复杂非线性滞后动力系统分析与综合问题是控制领域研究的热点和难点。本项目主要取得如下创新成果: 1、非线性滞后动力系统的鲁棒控制。主要研究状态信息延迟下非线性系统的鲁棒控制问题。通过构造李雅普诺夫函数和泛函,很好地解决了一直以来困扰控制领域的严格反馈结构非线性滞后控制难题。对于一般结构的非线性系统,提出了反馈控制设计框架,克服了现有文献关于滞后项的强假设条件。  2、非线性关联滞后大系统的分散协调控制。提出了强非线性关联环节下大系统的分散自适应反馈控制器设计方法,解决了非匹配模型跟随控制难题,为强耦合滞后大系统的分散控制问题提供了完整的解决方案。 3、滞后系统智能控制和网络化系统控制设计。提出了非线性滞后系统的无记忆智能控制设计理论与方法。给出了非对称网络环境下遥操作系统的控制器设计方法,建立了网络环境参数、控制器参数和系统性能的显性表达式。 4、应用基础研究:提出了化合反应系统的控制器设计方法,同时构建了工业无线网络控制平台。 研究成果在大型高炉建模与节能减排优化控制、恶劣工业环境下无线网络化控制、物联网、网络化机器人远程控制等领域得到了初步应用。
燕山大学 2021-05-04
高性能燃料电池
本项目不仅具有燃料电池系统集成技术,还具备包括催化剂、膜电极等的核心材料技术。产品可以应用于燃料电池汽车、固定式与便携式电源等。 燃料电池汽车因其具有零排放、效率高、燃料来源多元化、能源可再生等优势被认为是未来汽车工业可持续发展重要方向,是解决全球能源问题、环境污染问题、气候变化理想方案。
南京大学 2021-04-10
新型金属氢燃料电池
近日,上海大学材料科学与工程学院教授汪宏斌团队开发的氢燃料电池无人机及无人小车载新型金属氢燃料电池电堆,通过进一步降低动力系统自重提高能效,使其续航时间长达2小时,满足10000平方米空间连续作业,且搭载气瓶充气只需3-5分钟,大大缩短了充电时间。 随着新冠疫情暴发,各地防疫工作迅速展开,无人机以及无人小车广泛应用于短途物资配送、消毒液喷洒、广播宣传、布控监测等多个领域。传统机型多采用锂电池系统作为动力,工作时长短且充电时间长,影响防疫工作效率。相较于锂电池动力系统,氢燃料电池具有清洁环保、能量密度高、充气快、安全等性能优势,能够满足无人机及小车长时间、高强度作业。 目前,汪宏斌团队开发的氢燃料电池无人机及小车搭载消毒装置,已经应用于地方疫情防控工作中,形成了一套以氢燃料电池作为动力系统、高续航、高效率的“陆-空”立体无人防控系统。 浙江省金华市智能制造产业园的企业复工前夕,氢燃料电池无人机在园区内进行了全面消毒作业。此次用于消毒作业的无人机搭载了1.5Kw金属电堆,配置了15kg消毒液,续航里程达2小时。除此之外,无人机还在金华市多个乡镇、街道、社区内进行了广播宣传和消毒作业,大大节省了防疫期间的用人成本,减少了人员聚集带来的疫情传播风险。点击查看原文
上海大学 2021-04-10
高效氢燃料电池技术
1)质子交换膜燃料电池电堆 质子交换膜燃料电池是指一类以质子交换膜作为电解质的燃料电池体系,这种燃料电池也经常被称为固态聚合物燃料电池,电池中包括质子交换膜、催化剂层、气体扩散层、双极板,一般将质子交换膜、催化剂层及气体扩散层电极压成一体,并称为膜电极集合体。 研究组目前掌握质子交换膜燃料电池电堆的关键技术,包括各关键材料的结构、特性,并开展了大量研究实验分析环境湿度、工作压力、工作温度、反应气体条件、燃料利用率和空气利用率等对电池电压-电流性能的影响。已有定型产品,具备科技成果的技术转化能力。 2)车用燃料电池系统 用燃料电池做电源驱动汽车是电动汽车的一种,其电池的能量是通过氢气和氧气的化学作用,而不是经过燃烧,直接变成电能或的。燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是无污染汽车,燃料电池的能量转换效率比内燃机要高2~3倍,因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。具备产业化技术能力。 3)军用燃料电池系统 军事上的应用是燃料电池最主要的也是最适合的市场之一,其最初就是作为宇宙飞船或潜艇使用的数千瓦级能源而开发的。此后,由于各国政府尤其是加拿大、美国和德国对质子交换膜燃料电池用于航空航天和军事领域研究的重视和资助,使得其技术越来越成熟,性能日益提高。 针对军事应用领域的潜艇动力源、通信指挥系统电源、军事备用电源、应急照明电源以及航空航天领域等,研制一款氢能备用电源产品,采用箱柜式机体外壳,内部可根据需要配置单个或多个质子交换膜燃料电池电堆模块,并外置多个固态氢存储装置,满足各种用电需求。
江苏师范大学 2021-04-11
小型低醇类燃料电池
小型燃料电池的基本要求应是可以室温快速启动、工作温度低、寿命长、比功率和比能量高、燃料和氧化剂便宜易得、易储存和携带(无毒或低毒,或者有毒物无外渗透问题)、且整体体积小等。根据燃料电池的分类及工作原理,只有低醇类质子交换膜燃料电池最接近这一要求。但质子交换膜燃料电池商品化必须解决成本和燃料两大问题。据报,目前质子交换膜燃料电池成本已降至每千瓦数百美元,通过批量生产和提高技术水平,还有可能进一步降低成本。最理想的燃料是纯氢,但储氢材料及其安全性仍是极大困难。含一个碳的甲醇(CH3OH)在催化剂的作用下部分氧化、并经净化制富氢,是一个理想的替代氢源,而且原有的加油系统可以共用。但甲醇蒸汽有毒(会造成眼睛失明)且甲醇易渗透污染地下水,因此,直接甲醇燃料电池必须很好地解决密封和环保处理问题。而这一困难,对于间接甲醇燃料电池就比较容易解决。所谓间接甲醇燃料电池,就是将燃料系统分开,先用甲醇催化氧化制出富氢,而后再进入电池作为燃料。
厦门大学 2021-04-11
燃料电池催化剂
质子交换膜燃料电池(PEMFC)具有能量转换效率高和环境友好等优点, 是电动汽车的理想动力源。但燃料电池电动汽车(FCV)的商业化,必须解决基 于碳载钳(Pt/C)催化剂FCV的高成本问题。 自2009年美国科学家在Science杂志报道氮参杂碳纳米管(NC)具有潜在 的氧还原(0RR)催化活性以来,化学家与材料科学家一直在探寻如何进一步 提高NC材料的0RR催化活性的方法,以代替目前燃料电池发动机中的Pt/C催化剂。因此,我们的研究团队基于氮参杂石墨烯(NG)材料,在国际上首次通过 “NG分子结构一NG电导率一0RR催化活性”的关联,找到了该科学难题的突破 点.我们在分子结构模拟的基础上,认识到三种氮参杂NG材料中,既唳型和既 咯型具有二维平面结构,使NG保持了石墨烯原有的平面共辗大兀键结构,具 有良好的导电性,因而具有优异的0RR催化活性;而丁基型NG为三维空间不 平整结构,破坏了石墨烯原有的二维平面共巍大e键结构,导电性差,因而0RR 催化活性低。因此,有效的氮参杂应以唬唳型和唬咯型为主,尽可能减少甚至 杜绝丁基型NG的形成。我们利用层状材料(LM)的层间限域效应,通过调制LM 层间距,在LM层间插入苯胺单体,层间聚合,然后热解的方法,获得平面氮参杂 达90%以上的NG材料。其催化0RR的半波电位仅比Pt/C催化剂落后60mV,是传 统方法下获得的NG材料0RR催化活性的54倍,以该材料为正极催化剂的质子 交换膜燃料电池的输出功率达580mW/cm ,与Pt/C催化剂的0RR活性处于同一 个数量级,为世界领先水平。我们开发的此类新型NG材料已经具备了在燃料 电池发动机中完全替代Pt/C催化剂的可能性。LM层间近乎封闭的扁平反应空间 不仅克服了传统开放体系下合成的NG以丁基型为主,导电性差,活性低的弊病, 而且也克服了开放体系下因掺N效率低而导致合成NG成本高的问题。该研究成 果意味着,长期困扰燃料电池实用化的高成本问题将不再是瓶颈问题。
重庆大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 635 636 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1