高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
微生物转化生产维生素 C 磷酸酯的关键技术
维生素 C 磷酸酯钠(SAP)作为维生素 C(AsA)多种衍生物中性能最好的一种,克服了 AsA 本身存在的缺陷(如受热、见光易分解和易氧化),在体内磷酸酶作用下迅速转化成 AsA。SAP 由于其优越的性能被广泛应用于医药、化妆品、食品添加剂、保鲜剂、饲料添加剂等诸多领域。目前,工业化生产 SAP 主要途径为化学合成法,此法反应步聚复杂,条件不易控制,副产物较多,成本也很高。本技术方法通过基因工程手段获得了高产维生素 C 磷酸化酶突变菌株。目前该项目正在酶工程改造,以进一步提高底物的转化率。 
江南大学 2021-04-11
微型喷雾泵生产装备自动化与信息化融合技术及产业化
主要技术内容: (1)破传统喷雾泵生产设备机械结构设计,采用凸轨、凸轮机构,创新性研制了高精度、高效率的喷雾泵电化铝壳抓口机、喷头打喷咀机等系列装配设备,提高了设备的装配精度和效率。提出集成基于等价输入干扰估计器与参数智能辨识的智能驱动控制技术,成功解决了微型喷雾泵现场设备层不确定干扰、电机参数的时变性对装备电机控制性能影响问题,提高了生产装备控制的精度及可靠性。 (2)集成 RFID 与 WSN,构建微型喷雾泵生产过程信息采集网络,创新性地引入混沌粒子群优化算法,优化采集网络节点部署;动态选择通信节点数目,在获得最大网络覆盖范围的同时,避免节点间的冲突,降低网络能耗,保证了生产过程数据采集与传输的实时性和可靠性。 (3)创新性提出并实现了微型喷雾泵制造过程多目标资源优化调度技术。建立生产车间多目标资源优化调度模型,提出基于种群年龄模型的动态粒子数微粒群优化算法来求解优化问题,并采用层次分析法进行决策,成功实现了微型喷雾泵生产全流程的精益管控,全面提高了生产质量与资源效率。 (4)创新性研发了一种面向制造全过程的信息集成平台。将生产过程信息、管理信息等数据高度融合,实现底层物联网到互联网的无缝连接;解决了常规DCS、MES、ERP 三层架构存在的数据交换困难、系统庞大、功能定制性差、难以适用于中小型制造业等缺点,为微型喷雾泵制造装备的自动化和信息化融合提供了解决方案。 行业意义: 项目通过攻克微型喷雾泵生产装备的自动化与信息化技术融合的关键技术,突破国外先进技术的壁垒,形成了自主知识产权与技术体系,项目成果提升了微型喷雾泵加工装备的自动化、信息化水平,符合国家可持续发展战略的绿色制造技术,可带动和促进化妆品、保健品等领域向高档化的高层次技术方向发展。 获奖情况:2015 年获中国轻工业联合会科学技术进步奖一等奖。 成果的技术指标、创新性与先进性: (1)引入凸轮、凸轨等机构,并结合等价输入干扰估计器、智能辨识等方法设计控制策略,从机械和控制两方面进行突破,自动化程度和生产效率高。 (2)集成 RFID 与 WSN,采用混沌粒子群优化算法优化网络节点,动态选择通信节点数目,降低网络能耗,生产过程数据采集与传输的实时性和可靠性高。 (3)建立以缩短生产周期、减少机器空转时间、降低产品次品率为等为目标,采用种群年龄模型的动态粒子数微粒群优化算法求解生产过程优化调度问题,采用层次分析法进行决策,实现微型喷雾泵生产全流程精益管控。 (4)采用完全不同于传统 DCS、MES、ERP 三层架构的模式,直接面向生产、管理全过程,开发信息集成平台,自动化和信息化融合度高、适用于中小型制造业。 技术的成熟度:相关技术已经形成产品,在无锡圣马科技有限公司及其下游企业进行了产业化。 应用情况: 针对微型喷雾泵加工装备产业当前普遍存在材料消耗大、能耗高、可靠性差、加工效率低、品种适应性差等问题,本项目以提高生产装备的自动化与信息化水平为目的,在装备高性能自动化控制、信息的采集与传输、优化调度、精益管控、平台建设等方面已经取得了创新性研究成果,并对成果进行了提炼、集成,从2012 年开始,针对本项目整体技术展开全面推广,应用于江苏、广东等地区的10 多家轻工装备制造及使用企业。 应用实践证明了,本项目成果总体技术创新程度高、成熟度高、附加效益显著,显著提升了我国塑料装备在国际市场具有较强的竞争力,有利于提高我国塑料装备的设计制造智能化水平,推动了我国塑料制造业的国际化发展。 
江南大学 2021-04-13
雷朝滋:加强企业主导的产学研合作,发展新质生产力推动高质量发展
高等学校作为国家科技创新重要供给侧,要深入学习贯彻党的二十大和二十届三中全会精神、全国科技大会和全国教育大会精神,特别是习近平总书记重要讲话精神,重新审视高校科技职责定位,把握好国家发展需求,认清肩负的历史使命。
中国高等教育学会 2024-11-29
专家报告荟萃⑭ | 重庆大学副校长卢义玉:新质生产力赋能创新创业教育
重庆大学将就业视为重中之重,不仅关心学生的就业率,更重视学生能够高质量就业。要实现高质量的就业,就必须要对学生各方面进行培养。
中国高等教育博览会 2025-01-10
专家报告荟萃⑲ | 重庆大学副校长卢义玉:新质生产力赋能创新创业教育
重庆大学将就业视为重中之重,不仅关心学生的就业率,更重视学生能够高质量就业。要实现高质量的就业,就必须要对学生各方面进行培养。怀部长在会议上强调的“三个谱”:知识图谱、能力图谱、素质图谱方面的工作,重庆大学关心的重点是能力图谱的建设和创新能力的培养。
中国高等教育博览会 2025-01-20
专家报告荟萃㊵ | 山东大学副校长易凡:强化有组织科研 培育发展新质生产力
在这个充满机遇与挑战的时代,山东大学始终秉持着对科技创新的不懈追求,积极探索前沿领域,力求为社会发展贡献更多智慧与力量。今日,我们有幸与尊敬的雷司长、高院士相聚一堂,一同回顾山东大学近年来在科技创新之路上的奋进历程,分享那些令人振奋的成果与突破。接下来,就让我们一同走进山东大学的科技创新世界,感受那蓬勃发展的活力与激情,见证每一位山大人在科研道路上的坚守与担当。
中国高等教育博览会 2025-03-12
废弃菌糠发酵生产菌肥工艺
成果与项目的背景及主要用途: 菌糠是指以棉籽壳、木屑、稻草、玉米芯、甘蔗渣及多种农作物秸秆、工业 废料(如酒糟、醋糟、造纸厂废液及制药厂黄浆废液等)为主要原料栽培食用菌 后的废弃培养基。菌糠主要含有物质是纤维素、半纤维素、木质素、抗营养因子 和少量的蛋白质,这些原料作为培养基栽培食用菌后,通过食用菌菌体的生物固 氮作用、酶解作用等一系列生物转化过程,粗蛋白质、粗脂肪含量均比不经过食 用菌发酵前提高二倍以上,纤维素、半纤维素、木质素等均已被不同程度的降解, 其中粗纤维素降低了 50%以上,木质素降低 30%以上,棉酚降低 60%以上,同 时还产生了多种糖类、有机酸类和生物活性物质。据报道,我国菌糠年产量在 200 万吨以上大部分当作废料而被浪费掉,给环境造成了很大的污染,一些菌糠 可以被用作畜禽饲料,并且用废弃菌糠来改良土壤可以做到废物利用、改善环境, 实现农业的可持续发展。 我国土壤绝大部分严重缺磷、缺钾,化学肥料中的磷元素和钾元素在施肥后 很快被固化,不再能够被植物使用。解磷菌、解钾菌及固氮菌是生物益生菌肥中 的主要菌株,使用这些土壤益生菌可以提高土壤中植物可利用氮磷钾的利用率。 如果能够利用废弃菌糠大规模培养这三种菌,制备成为生物菌肥,将会极大的增 211天津大学科技成果选编 加菌糠做为肥料的优势。本项目利用菌糠培养解磷菌、解钾菌、固氮菌,制备成 为生物菌肥,预期产生极大的经济效益和社会效益。 技术原理与工艺流程简介: 本项目拟利用处理后的废弃菌糠残渣培养酵母、解磷菌、解钾菌、固氮菌, 优化发酵条件,提高菌体量,获得制备微生物菌肥的最佳工艺路线。 天津大学从农业废弃物堆肥中筛选出 7 株解磷能力较强的菌株,其中菌株 FL7 表现出较好的解磷效果,FL7 解磷量为 436.63mg/L。该菌株已经于 2010 年 7 月 13 日在中国微生物菌种保藏中心进行保藏(保藏号:CGMCC NO.4008)。 本课题组还从农业废弃物堆肥中筛选得到解钾菌 K3、固氮菌 N1。解钾菌 K3 解 钾量达 4.10mg/L、固氮菌 N1 固氮量为 1.81×10—2mol/L。 另外,天津大学已经建立了以菌糠为基质培养解磷、解钾、固氮菌的发酵条 件,经过发酵条件优化,制备的菌肥中三种菌的含量达到 48.62×108CFU/g,其 中解磷菌 2.4×108cfu/g,解钾菌 25.22×108cfu/g,固氮菌 21×108cfu/g,均远高于 国标。 应用领域:生物、农业领域 合作方式及条件:具体面议
天津大学 2021-04-11
TFT、STN液晶材料生产项目
液晶(Liquid Crystal)于1888年由奥地利植物学家Reinitzer发现,是一种介于固体与液体之间、既具有晶体特有的双折射性又具有液体的流动性、具有规则分子排列的有机化合物,一般最常用的类型为向列相(Nematic)液晶。 显示用液晶材料按照化学结构可分为:联苯类、苯基环己烷类、乙烷类、炔类、含氟类、嘧啶类、烯类等类别的液晶单体。如果要满足液晶显示器(LCD,Liquid Crystal Display)对液晶材料特性的要求,还要选择适当的单体液晶并按一定的比例进行混合,得到满足不同液晶显示模式要求的混合液晶。 目前,液晶显示已经得到了广泛的应用。液晶材料在实现这些显示方式中具有举足轻重的作用,每一种新的显示方式的出现,总是伴随着新的液晶材料的出现。 随着液晶显示技术的发展,人们发明了不同的显示方式以满足各种需要,目前已经形成大规模工业化生产的显示模式主要有扭曲向列液晶显示(TN-LCD)、超扭曲向列液晶显示(STN-LCD)及薄膜晶体管液晶显示(TFT-LCD)等,这些显示器件在手表、计算器、仪器仪表显示、PDA、手机、液晶显示器以及液晶电视等中得到了广泛的应用。 北京科技大学材料科学与工程学院功能高分子材料学术梯队致力于将液晶材料国际先进技术引进中国,提升国内产业和新技术能力,并为投资者带来高额回报。我们拥有国际先进的TFT、STN、TN液晶单体、混合液晶的研发、生产技术,将与投资者共同实现该项目的产业化,为投资者带来丰厚回报。 根据液晶材料性质的不同,各种相态的液晶材料大多已开发用于平板显示器件中,现已开发的有各种向列相液晶、聚合物分散液晶、双 (多)稳态液晶、铁电液晶和反铁电液晶显示器等,其中开发最成功的、市场占有量最大、发展最快的是向列相液晶显示器(如TFT-LCD、STN-LCD、TN-LCD等),使用的是各种向列相液晶材料。 显示用液晶材料是由多种小分子有机化合物组成的,这些小分子的主要结构特征是棒状分子结构,现已发展成很多种类,例如各种联苯腈、酯类、环己基(联)苯类、含氧杂环苯类、嘧啶环类、二苯乙炔类、乙基桥键类和烯端基类以及各种含氟苯环类等。随着LCD的迅速发展,人们对开发和研究液晶材料的兴趣越来越大。近些年还研究开发出多氟或全氟芳环以及全氟端基液晶化合物。许多化学家们已合成出了性能优良的液晶材料。到 1998 年止,就大约有7万~7.5万多个液晶化合物合成出来,并以每年3000~4000个新液晶化合物出现的速度向前发展,尤其是日本每年都有大量新液晶材料方面的专利文献出现,以满足各种显示器的使用要求,但真正只有四五千种液晶化合物具有实用价值,能用在LCD中。显示用液晶材料根据用途可以分为TFT液晶材料、STN液晶材料、HTN液晶材料和TN液晶材料等。 我国液晶材料行业正处在飞速发展时期,各种液晶显示器件具有优异的显示效果、巨大的市场空间和经济意义。TFT、STN及中高档TN用液晶材料的国产化必将降低液晶显示器件的成本,大大改善我国的液晶显示器件的国际竞争力,使我国的液晶行业步入世界前列。因此组织TFT、STN和高档TN混合液晶及各种液晶单体的研发和工业化生产具有非常广阔的前景和经济效益。 目前,国际上主要有四家液晶材料公司,它们分别是德国Merck公司、日本Chisso公司、大日本油墨和日本ADK公司,主要生产中高档产品,如TFT、STN、中高档TN液晶材料。国内的液晶材料公司在中低档显示用液晶材料的生产上占据了主导地位,但由于研究经费严重不足和人才短缺限制了该行业的发展,高档产品的研发和生产基本上仍被德国、日本控制,其中国内所用的TFT、STN液晶材料大部分来自德国、日本,而国内液晶材料厂家则没有批量生产多路驱动TFT、STN液晶材料的能力。 在国内,尽管生产液晶材料的厂家越来越多,但大多以生产中间体、单体为主,具有混晶生产能力的只有极少的几个企业,而且国内目前中高档产品品种相对偏少,尚不能满足国内市场的需求,急待增加科研开发力度,尤其是TFT和STN混合液晶材料及各种高档液晶单体,国内市场已呈现大量需求状态,急需尽快占领。 北京科技大学材料科学与工程学院(简称材料学院)长期从事材料科学的研究,具有雄厚的材料研究和开发能力、具有比较齐全的材料测试和加工设备。功能高分子材料学术梯队隶属于材料学院材料物理与化学学科和功能材料研究所(教育部金属电子信息材料工程研究中心),拥有国际先进的单体液晶、混合液晶的研发生产技术,以TFT、STN液晶和中高档TN液晶为主要产品,技术起点高,在研发工作中已经取得了很大的进展,产业化后可以填补我国高档液晶材料的空白。
北京科技大学 2021-04-11
炼钢连铸生产调度软件系统
炼钢连铸是钢铁企业的核心生产工序,其生产调度对确保钢铁企业生产的高效运行起着非常重要的作用。本软件系统能够针对多台转炉、多台精炼炉、多台连铸机的炼钢连铸生产过程制定优化作业排序方案,进行动态生产调度管理和全面的生产信息管理。本软件系统的主要功能如下: 优化调度引擎:通过求解炼钢连铸生产调度数学模型的优化算法,编制炼钢-精炼-连铸生产作业计划; 实时信息管理:以可视化的方式对炼钢-精炼-连铸生产进行实时物料跟踪; 实时生产调度:根据生产实绩数据,通过干特图等人机交互界面动态调整作业计划; 生产实绩管理:对生产实绩数据进行全面管理,生成生产报表、进行数据分析。
北京科技大学 2021-04-11
活性氯化亚铜生产新工艺
活性氯化亚铜为白色立体晶体,微溶于水,溶于浓盐酸和氨水中生成络合物,不溶于稀盐酸及乙醇中,在干燥空气中稳定。在热水中迅速水解生成氯化铜水合物而呈红色。活性氯化亚铜主要用于染料工业,有机合成,硅化物,石油化工等生产中作缩合剂,催化剂,还原剂等,还用于杀虫剂,防腐剂及冶金,电镀,医药,电池等制造中。 传统的生产方法中一般是以金属铜粉或铜作为原料,首先制成硫酸铜,再进一步制成氯化亚铜,受到原料来源及价格的限制,使生产成本高,产量低,市场供应紧张。本研究是以低品味铜为原料,经焙烧,浸取转化,首先将矿石中的铜与其它成分分离,并制成纯净的硫酸铜或氯化铜溶液,再加食盐,加入亚硫酸盐进行还原,生产氯化亚铜沉淀,用乙醇洗涤,真空干燥,即得产品。 根据初步预算,年产2000吨活性氯化亚铜的生产装置,总建设投资为500万元,年产值4000-4200万元,生产成本3000万元,年利税收入1000-1200万元,产品市场行情及应用前景十分看好。
武汉工程大学 2021-04-11
首页 上一页 1 2
  • ...
  • 51 52 53
  • ...
  • 708 709 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1