高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
酸平产线热轧酸洗产品
ESP常规热轧酸洗产品优势在于厚度规格超薄(至0.6mm),去除了表面氧化铁皮,便于焊接、涂油和喷涂,有着良好的表面光洁度和外观及较高的尺寸精度。 ESP热轧酸洗产品适用于各类承载复合体,可满足折弯、辊压、冲孔、承重等要求。广泛应用于机械、车辆配件、门业、货架等行业。
日照钢铁控股集团有限公司 2021-09-09
工业自动化线束
机器人电缆线束,报警与安防电缆线束,通讯线束,同轴数据电缆线束;自动化设备线束。医疗设备线束:生化检测类,射频类,监护类机内外线束等
永瞻电子科技(东莞)有限公司 2023-08-01
小型智能线控滑板底盘
浙江天尚元科技有限公司 2022-06-20
大容量煤粉锅炉受热面优化技术改造
由于我国现在投运的机组其经济性指标比起国外先进机组还有很大差距,因此,除了对经济性差的老机组进行淘汰和改进外,加强对在役锅炉的优化设计研究等工作也是一种改变落后状态行之有效的方法。
北京交通大学 2021-02-01
大容量煤粉锅炉受热面优化技术改造
1、项目概述 由于我国现在投运的机组其经济性指标比起国外先进机组还有很大差距,因此,除了对经济性差的老机组进行淘汰和改进外,加强对在役锅炉的优化设计研究等工作也是一种改变落后状态行之有效的方法。 2、技术创新点 (1)理论上的创新点 项目组在结合多种算法的同时,提出了修正系数这一重要调整参数,从而使得热力计算能够针对某特定锅炉进行准确预测。大大提高了计算的可靠性和准确性。 (2)方法上的创新点 针对大型煤粉锅炉存在的实际问题,项目组首次提出了截短分隔屏增加省煤器的优化改造方案。改造方案可以同时解决过热器减温水过量和二次汽欠温的问题。通过截短分隔屏,减少了过热蒸汽系统吸热量,从而降低了过热系统减温水,同时使得高温再热器的入口烟气温度升高,从而解决了再热器欠温的问题。在该方案的基础上,增加尾部省煤器受热面,进一步降低了过热系统减温水量,同时抑制了排烟温度由于截屏而升高这一隐患。完满解决了锅炉存在的问题,大大提升了机组运行的安全性和经济性。 3、同类技术产品或成果比较 项目组采用热力校核计算和数值模拟相结合的方式对锅炉改造效果进行了全面评估。目前,同时采用这两种方式的对锅炉改造进行预测评估的报道比较少见。热力计算和数值模拟两个手段相辅相成,结合起来可以为电厂提供全面的优化改造预测信息。热力计算着重于锅炉内辐射受热面和对流受热面的换热情况,但无法反映改造对炉内流场和温度场乃至组分场的影响,数值计算可以在热力计算的基础上对炉内场的信息进行预测。在锅炉热力校核计算准确性方面,关键是计算所采用的半经验公式的可靠性和准确性。数值计算方面关键是所采用的计算模型的可靠性、准确性及使用计算网格的合理性。方法创新点主要是提出新颖的切实有效可行的受热面改造方案,经过一处改造,同时解决多个问题,降低了改造成本,提高了改造效率。 4、能为产业解决的关键技术 关键技术有两个方面:热力校核计算制订优化受热面改造的合理方案;预测改造方案实施后的锅炉炉内燃烧工况、流动工况及经济效益。 5、已应用的成功案例 项目组已经积累了多年经验,目前已经成功应用的案例主要有: (1)内蒙古大唐国际托克托发电有限责任公司的1#、3#锅炉对流受热面优化改造; (2)河北大唐王滩发电厂1#、2#炉受热面的优化改造; (3)大唐韩城第二发电厂有限责任公司的二期3号锅炉对流受热面优化改造。 应用范围: 主要应用于我国大容量煤粉锅炉以及循环流化床锅炉的受热面优化改造。针对各个不同改造方案进行热力校核计算,根据对计算结果的分析对比,为电厂提供合理可行的改造方案,以期解决电厂锅炉运行中所出现的安全隐患问题及经济性较低的问题。
北京交通大学 2021-04-11
面向智能制造的工业物联网平台及升级改造
本项目联合中德智能制造研究院,借力德国专家资源,组建了一支可快速响应企业传统产线智能化升级改造的物联网中控平台研发团队。团队致力于打造智能制造示范工厂,目前与南瑞集团、大全集团、泉峰集团等企业的生产系统升级优化项目正在实施中。
东南大学 2021-04-11
重组改造枯草芽孢杆菌高产脂肽集成技术
1.痛点问题 表面活性素是一种枯草芽孢杆菌脂肽,分子结构含7个氨基酸环肽及13-16个碳链长度的脂肪酸,作为脂肽家族生物表面活性剂的代表性分子,具有优异的表面/界面活性、稳定性及抑菌、杀虫等性能。因此,其在石油开采、工农业、医药、日化等领域展现出了非常广阔的应用前景。 但发酵产率低严重制约了表面活性素的工业化生产和应用。研究表明,野生菌株的产量通常为1g/L以下。培养基和培养条件优化后,产量提高也很有限。菌株的基因工程改造方面也比较困难。表面活性素(脂肽)合成机制为特殊的非核糖体肽合成机制,基因簇很大,长度达到26Kb以上。因此很难实现异源表达,只能进行基因组原位突变改造。其分子结构中既包含氨基酸、也包括脂肪酸,因此代谢途径也很复杂。此外,发酵培养过程中,严重的起泡和泡沫溢出问题也制约了工业化的进程。 2.解决方案 化工系于慧敏教授团队从南海底泥等特殊环境中筛选获得了产表面活性素野生枯草芽孢杆菌,进一步采用原位编辑超强启动子工程、特点氨基酸和脂肪酸代谢工程和营养细胞-芽孢调控综合策略,成功构建高产表面活性素的无休眠枯草芽孢杆菌超级细胞工厂,并进一步打通了高产表面活性素新工艺,获得了表面活性素液体和粉末产品。 3.合作需求 本项目寻求有志于在石油开采、工农业、日化洗涤等不同应用领域进行脂肽(表面活性素)新产品开发的企业开展合作,尤其是在上述不同领域具有孵化资源或资金,在工程化、产品化所需的场地、实验条件等方面具有生产和销售优势或经验的企业。也寻求对不同应用场景具有共同开发兴趣的企业开展技术合作。最后,也希望与一些高科技园区进行对接,推动产品生产线建设。
清华大学 2022-09-23
线控底盘无人驾驶车辆
1 概述 本产品核心技术指标分为四个维度:线控技术、无人驾驶技术、通讯技术、云控技术。线控技术是底层核心技术,线控子系统系统可以做到100ms内高精度控制响应;通讯技术是规划化的前置条件,可以进行低延时远程画面回传,实现远程驾驶双备份;无人驾驶是单车载体的控制中心,基于主流无人驾驶系统Apollo二次开发,接口丰富;云控技术是构建园区场景大脑,实现多车状态的实时监测。 2 优势与特点 (1)基于Apollo开源平台,软件开发门槛低 (2)整合底盘与感知套件,硬件开发门槛低 (3)“车+云”研发模式,降低工程门槛 (4)可适配多种规格底盘,满足多样需求 3 主要应用案例 序号 应用单位 应用时间 备注 1 吉林大学(校园无人配送) 2019年12月   2 北京经济技术开发区(亦庄) 2020年1月   3 北京理工大学国防科技园智能示范 2020年9月    
北京理工大学 2021-05-11
热处理线常化冷却技术
项目背景:正火热处理工艺,是提高钢板韧性的重要工艺手段。常规的正火热处理工艺,加热后通常采用慢速冷却会导致相变温度提高,铁素体晶粒仍然会长大,室温组织细化效果被大大折扣;导致屈服强度降低。采用正火后加速冷却可以降低相变温度,也可抑制微合金元素碳氮化物的长大,使其低温弥散析出,从而保证钢板强度。基于对中厚板正火冷却过程的换热机理及钢板内部组织演变机理的分析,于2005 年开发了国内首套中厚板正火炉后控制冷却(NCC)装置。该装置可自由调节水量,满足不同钢种及规格的控制冷却的冷却速率要求;钢板冷却均匀,冷却后钢板平直度高;金相组织细化,综合力学性能得到提高,可以挽救轧线生产的不合格钢板,显著提高了正火后钢板的合格率。应用该装置开发了高强度高层建筑用钢 Q460E 钢板的奥氏体加热+控制冷却+回火的热处理工艺,已成功生产并应用于奥运会主会场“鸟巢”工程。关键工艺技术:采用正火控制冷却技术可以降低相变温度,也可抑制微合金元素碳氮化物的长大,使其低温弥散析出,从而保证钢板强度。对于低碳贝氏体类型钢,采用正火空冷无法得到需要的低碳贝氏体组织,性能无法保证;采用正火加速冷却则可控制相变温度,保证得到所需的低碳贝氏体组织。部分薄规格或中等厚度规格产品可以采取正火后加速冷却实现淬火,生产调制钢板。另外,通过正火控制冷却技术,还可以提高钢板的性能合格率 10-15%。常化冷却技术的核心设备是板带钢上下表面的冷却器,高冷速调节范围、高冷却均匀性是常化冷却技术的关键性、核心性问题。北京科技大学基于对板带钢冷却过程的换热机理及内部组织演变机理的研究,通过实验室研究与工程实践成功开发出具有自主知识产权的超密集冷却器及配套常化冷却工艺,可满足常化热处理产品常化后冷却工艺实施过程中所需的大冷却速度调节范围以及高冷却均匀性的需求,保证热处理产品强度与韧性的高度匹配。
北京科技大学 2021-04-13
特种车辆用线控制动系统
1. 痛点问题 随着自动驾驶技术的迅猛发展,特定场景下的自动驾驶技术应用成为现实。这对应用于特定场景自动驾驶车辆的制动系统提出了新的需求,传统制动系统为真空助力器,该产品依赖于发动机为助力器提供真空动力源,而应用于该领域的车辆大多为新能源电动车,取消了发动机,无法直接为车辆制动系统提供真空动力源,且不能配合电动车实现能量回收功能。另外,传统制动系统是纯机械部件,无法为该类特种车辆的智能化需求提供主动制动、辅助制动等功能。 2. 解决方案 本项目所研究的特种车用线控制动系统,是一种基于液压传递的全解耦线控制动系统。主要由电机、减速増扭机构(齿轮、丝杆、螺母)、制动主缸、前后壳体、踏板推杆、行程传感器、液压力传感器、电机控制器等组成。项目成果所涉及到的新型踏板行程传感器将踏板推杆的平动转化为传感器内部器件的转动,基于此,可以通过在推杆上设计不同曲率的沟槽,将传感器设计为非线性、线性以及不同的物理精度。所涉及的全解耦电子助力器,制动踏板推杆和制动主缸活塞之间无机械链接,属于智能制动执行器,满足特种自动驾驶车辆对制动系统主动制动的功能要求、取消了传统制动系统对发动机真空度的依赖、具备配合电动车实现制动能量回收的功能。 解耦原理:踏板推杆与制动总泵推杆之间无连接,制动系统的动作依靠电信号或者行程传感器信号进行控制实现。 工作原理:当驾驶员踩下制动踏板时,踏板推杆向前移动,推动行程传感器内部旋转件转动,传感器记录旋转部件的转角,根据推杆滑槽曲率计算出踏板推杆实际行程,识别驾驶员制动意图。通过电信号传递给系统控制器,控制器控制执行器电机动作,电机驱动丝杆和螺母,讲转动转化为平动,推动制动缸活塞建立液压制动力,作用在轮边制动盘上,产生制动力。 合作需求 寻求与特定场景自动驾驶、特种车辆线控底盘、智能轮边执行器等行业客户合作,解决行业痛点问题,共同推进特种场景下自动驾驶汽车发展。
清华大学 2021-11-12
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 117 118 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1