高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
周向传动阈值可调式过载
保护
装置
一种周向传动阈值可调式过载保护装置,其上的圆柱滑块(1)前端有半球体(11)、圆柱滑块(1)上有凸板(12),滑块(3)底部、压缩弹簧(2)置于圆柱滑块(1)内;从动轴套(10)内有凹槽(101),从动轴套(10)套在主动轴(9)外壁上,当系统处于正常工作时,内六角螺钉(8)压紧梯形块(7),梯形块(7)压紧两侧楔形块(6),楔形块(6)压紧弹簧(5
东南大学
2021-04-14
电网选线、消弧、故障定位综合
保护
装置
按照电网故障选线尤其是其在消弧补偿情况下面临的困难,本装置对注入法进行改进,使选线信号不在受制于电容、电流的影响,同时还可以与接地电阻保持着接近于线性的关系,为排除暂态信号对选线影响,用DSP处理小波实现准确选线,消弧补偿采用极值法,通过接地变压器付边向原边加入阻尼电阻,将过电压限制在电网安全运行规程要求范围内,运用单片机控制接地变压器付边电流实现对电网电容的补偿,解决供电电缆接地放炮问题,为接地故障定位信号传输扫除电网电容影响,把注入到电网电缆通路中与故障点具有关系的信号传递到故障定位装置传感器
南京工业大学
2021-04-14
新型惰性气体
保护
高温加热炉
研发阶段/n内容简介:该惰性气体保护炉结构特点是:加热处理室采用工作台与盖子可同时上升或下降的结构,上升下降式机构设置在底部,热处理室盖子与工作台以圆锥表面相配合,盖子与工作台之间留有一段间隙,它们之间的磨损,不影响它们的配合,保证配合紧密,工作时热处理室盖子通过上升机构紧压在炉顶,更增加配合紧密性.因此是同类密封式热处理炉子中最为理想的结构.本产品获得一项专利,专利号:ZL200420076090.4。
湖北工业大学
2021-01-12
生物多样性
保护
领域取得新进展
发现在过去十万年海平面的快速变化过程中,红树植物虽然存活却极大地丢失了遗传多样性,现存红树植物的遗传多样性水平与气候改变时的死亡率存在显著负相关,未来海平面变化对红树林生态系统具有很大威胁。研究指出,现存的遗传多样性极低的红树植物演化潜能较小,广泛的海岸建设限制了红树植物向内陆撤退的物理空间,红树林面临非常严重的胁迫。为了更好地保护红树林,该文提出建设保护区时仅圈住红树林现生分布区不够,还应该留出充分的缓冲区以帮助红树林应对未来海平面上升。
中山大学
2021-04-13
一种快充气型微正压
保护
系统
本发明公开了一种快充气型微正压保护系统,包括:经依次顺 序连接的第一开关阀 2、第一减压阀 3 和第二减压阀 4 分为两条支路, 其中,一条支路经第一流量计 5 与毛细管 6 一端相连,另一支路经第 二流量计 7 与第二开关阀 8 一端相连,毛细管 6 另一端和第二开关阀 8 另一端接过滤器 9 的一端,过滤器 9 另一端与目标腔体 10 一端相连, 目标腔体 10 另一端与节流部件 14 相连,其中,所述目标腔体 10 为密封腔体,其内壁上布置有测量腔内压力的压力传感器 11、用于测量腔 内气体纯度的成分检测仪 12、以及过压保护阀 13。本发明实现了微正 压保护系统初始化过程的快速充气功能,缩短了系统的初始化时间, 同时还保证目标腔体在工作过程中的微正压稳定。
华中科技大学
2021-04-11
专家报告荟萃⑯ | 延边大学党委副书记于金欢:扎根边疆 ·融创未来——就业育人的范式革新与
生态
共建
学校全面贯彻落实党中央、国务院及吉林省委、省政府“稳就业”“保就业”决策部署,坚持把毕业生高质量就业作为全面落实立德树人根本任务的内在要求。
高等教育博览会
2025-07-01
陆地
生态
系统氮、磷限制格局
氮和磷是植物生长所必需的两种最为重要的养分元素,在气候变化和CO2浓度上升的背景下,氮、磷养分的供给不足限制了陆地植物的生长及其对大气CO2的吸收能力,成为制约未来陆地碳汇的重要因素。然而,全球陆地生态系统氮、磷限制的空间格局仍是一个尚未解决的重要科学问题。地理科学学部杜恩在副教授与斯坦福大学Rob Jackson教授团队合作,提出了氮、磷限制评估的理论框架并量化分析了全球陆地生态系统氮、磷限制的空间格局及其关键影响因素,相关结果近日发表在Nature Geoscience。 该研究根据化学计量内稳态假说和最小限制因子定律,推导提出基于叶片氮、磷重吸收效率比值指示氮、磷限制的理论框架,进一步建立全球陆地植物叶片氮、磷重吸收效率数据库和全球养分添加实验数据库,并在上述框架基础上量化评估了全球陆地生态系统氮、磷限制的空间特征,完成了全球陆地生态系统氮、磷限制的高分辨率空间制图。 该研究发现,全球自然陆地生态系统(农田、城市和冰川除外)有18%的区域受到较强的氮限制,而43%的区域受到较强的磷限制,其他39%的区域则受氮、磷共同限制或氮、磷任一元素的微弱限制。总体而言,氮限制在在苔原、北方针叶林、温带针叶林、山地草原及灌丛较为普遍,磷限制在热带及亚热带森林、温带阔叶林、沙漠、地中海植被、以及热带、亚热带和温带草原、稀树草原和灌丛较为常见。相关结果增进了对全球陆地生态系统氮、磷限制格局的量化认识,为地球系统模式氮、磷限制的模拟提供了基准数据,有望更好地预测气候变暖和CO2浓度上升情景下陆地碳汇的变化。该论文自2月10日在线发表后,已多次被科学媒体网站报道,包括SciGlow、myScience、Science Edition、Phys.org、Technology.org、News Wise、Mirage News、CO2 Coalition等。 杜恩在副教授为论文第一作者和第一通讯作者,斯坦福大学Rob Jackson教授为论文共同通讯作者,其他合作者来自美国劳伦斯利弗莫尔国家实验室、瑞典隆德大学、荷兰乌特勒支大学、中科院植物所等研究机构。该研究受到国家自然科学基金(41877328, 41630750 & 31400381)、霍英东青年教师基金(161015)、地表过程与资源生态国家重点实验室项目(2017-ZY-07)资助。
北京师范大学
2021-02-01
生态
农业智慧化信息系统的示范应用
系统的主要功能包括(参见图1): (1) 数据、视频实时数据采集和无线传输; (2) 基于上位机的远程控制和数据显示、追溯及分析等; (3) 基于手机客户端的移动APP线上线下销售; (4) 基于WiFi的手持终端定位、导航和跟踪; (5) 信息融合和专家决策支持系统; 应用领域包括:温室环境智能控制、智能家居、农田生产(四情)监测、旅游景区的人流量统计及大数据分析、大型商场智能监控、地下停车场定位等。 项目特色:和有机农业的行业领导者紧密结合,解决现有农业物联网系统中有线系统中的布线复杂、成本高且功能单一的难题;在TCP和UDP协议下都可实现毫秒级延时的实时控制;集数据采集、传输、远程控制及终端定位、导航和监控于一体;系统可完成基于手机APP和上位机软件的多种控制方式;只要满足有WiFi,Internet,移动网络其中的任意一个即可进行远程控制。 先进性:国内首个集数据采集传输、视频监控、终端导航、定位与跟踪与一体的农业信息化平台,利用手机APP实现对农作物的线下生产、线上销售、长势跟踪等一体的多功能农业信息化智能平台; 技术指标:电源输入(DC 2.0~3.6V);控制延时<30ms;误码率< ;无线节点续传距离>=150m;无线AP覆盖范围>30X30 ;定位精度<1.5m;可用信道数15个;支持点对点、点对多点、对等和Mesh网络 能为产业解决的关键问题: 可解决传统农业中的粗放式种植、经验型种植及人工参与度高等问题,在降低农业生产成本的同时,提高农业生产、销售、追溯等环节的智能化水平。基于WiFi获取的现场后台大数据挖掘将解决现代农业的专家知识匮乏问题,形成可信度高的知识库指导农业生产。 实施后取得的效果: 推动当地农业智能化水平进步,提高农业生产效率、减少农业生产成本,促进规模化种植、最终形成行业标准。
电子科技大学
2021-04-10
陆地
生态
系统氮、磷限制格局
氮和磷是植物生长所必需的两种最为重要的养分元素,在气候变化和CO2浓度上升的背景下,氮、磷养分的供给不足限制了陆地植物的生长及其对大气CO2的吸收能力,成为制约未来陆地碳汇的重要因素。然而,全球陆地生态系统氮、磷限制的空间格局仍是一个尚未解决的重要科学问题。地理科学学部杜恩在副教授与斯坦福大学Rob Jackson教授团队合作,提出了氮、磷限制评估的理论框架并量化分析了全球陆地生态系统氮、磷限制的空间格局及其关键影响因素,相关结果近日发表在Nature Geoscience。 该研究根据化学计量内稳态假说和最小限制因子定律,推导提出基于叶片氮、磷重吸收效率比值指示氮、磷限制的理论框架,进一步建立全球陆地植物叶片氮、磷重吸收效率数据库和全球养分添加实验数据库,并在上述框架基础上量化评估了全球陆地生态系统氮、磷限制的空间特征,完成了全球陆地生态系统氮、磷限制的高分辨率空间制图。 该研究发现,全球自然陆地生态系统(农田、城市和冰川除外)有18%的区域受到较强的氮限制,而43%的区域受到较强的磷限制,其他39%的区域则受氮、磷共同限制或氮、磷任一元素的微弱限制。总体而言,氮限制在在苔原、北方针叶林、温带针叶林、山地草原及灌丛较为普遍,磷限制在热带及亚热带森林、温带阔叶林、沙漠、地中海植被、以及热带、亚热带和温带草原、稀树草原和灌丛较为常见。相关结果增进了对全球陆地生态系统氮、磷限制格局的量化认识,为地球系统模式氮、磷限制的模拟提供了基准数据,有望更好地预测气候变暖和CO2浓度上升情景下陆地碳汇的变化。该论文自2月10日在线发表后,已多次被科学媒体网站报道,包括SciGlow、myScience、Science Edition、Phys.org、Technology.org、News Wise、Mirage News、CO2 Coalition等。 杜恩在副教授为论文第一作者和第一通讯作者,斯坦福大学Rob Jackson教授为论文共同通讯作者,其他合作者来自美国劳伦斯利弗莫尔国家实验室、瑞典隆德大学、荷兰乌特勒支大学、中科院植物所等研究机构。该研究受到国家自然科学基金(41877328, 41630750 & 31400381)、霍英东青年教师基金(161015)、地表过程与资源生态国家重点实验室项目(2017-ZY-07)资助。
北京师范大学
2021-04-10
寒武纪大爆发时期
生态
系统演化
动物门类在前寒武纪至寒武纪过渡时期(约5.6-5.2亿年前)首次在地球上大量出现,这一重大生命演化事件被称为寒武纪大爆发:在不到地球历史1%的时间里,诞生了绝大多数动物门类。早在达尔文时代,科学家们就已经认识到动物门类在寒武纪突然出现的现象,1948年P.E. Cloud将之定性为爆发式演化事件,直至今天,寒武纪大爆发仍然是自然科学领域的前沿课题。2015年,英国经济学人杂志发表重大科学难题系列文章,将寒武纪大爆发列为6大自然科学难题之一。为什么动物门类在这个时候大规模爆发式出现?寒武纪大爆发的原因到底是什么?围绕这个问题,过去主要做了两方面工作:一方面古生物学家发现化石,研究寒武纪大爆发时期动物门类的多样性,揭示它们之间的演化关系;另一方面,古环境科学家,主要利用地球化学手段研究海洋氧化还原条件的变化,探讨寒武纪大爆发的原因。 然而,海洋生态系统是由生物和环境构成的统一整体,具有复杂的物质和能量流动途径。在这个统一整体中,生物之间、生物与环境之间相互影响、相互制约,并在一定时期内处于相对稳定的动态平衡状态。以往主要关注生态系统内的消费者动物门类起源演化和环境变化(氧)两个方面,没有将生物与环境作为统一整体来研究生态系统的演化。生态系统内的生产者和分解者的构成、物质循环等研究还未开展。环境变化研究不够全面,对氧之外的其它环境因素研究不够充分。可见,目前对寒武纪大爆发的研究存在严重的局限性。要解决这一重大科学问题,需要考虑生态系统的整体演化,组建涵盖古生物学、地层学、地质微生物学、地球化学和沉积学等多学科人才团队,开展全面系统的研究,揭示寒武纪大爆发时期生态系统的时空变化规律。 科学目标 以寒武纪大爆发时期(埃迪卡拉纪晚期至寒武纪早期)不同沉积相区、环境、生物演化阶段的代表性生物群和岩性段为研究对象,以生物化石带为时间标尺,揭示生态系统的结构、环境演化特征和生物地球化学过程,探讨寒武纪大爆发时期生态系统在时间和空间上的差异性,重建演化过程。
西北大学
2021-02-01
首页
上一页
1
2
...
14
15
16
...
36
37
下一页
尾页
热搜推荐:
1
云上高博会企业会员招募
2
64届高博会于2026年5月在南昌举办
3
征集科技创新成果