高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
平板膜生物反应器
平板膜生物反应器的性能指标全部达到上述“膜生物反应装置”的界定描述条件要 求。 利用自主研制的核心膜组件、膜单元、膜支架,及相应的平板膜生物反应器设计、 运行调试技术,课题组已经建立了两个示范工程,其中,白龙港水质净化厂中的中水回 用项目为目前报道的国内最大平板膜生物反应器应用项目。 课题组为目前国内唯一掌握平板膜生产、平板膜组件制作、膜组件性能评价、膜生物反 应器设计、污水处理整体工艺流程设计、膜生物反应器调试、清洗和运行管理整套技术 的单位。 
同济大学 2021-04-13
光子微球生物芯片技术
本技术利用光子晶体微球的颜色对待测生物分子进行编码,一种颜色的微球可以检测一种分子,与微孔板或者微流控芯片相结合,通过自动化的流体控制和光学检测完成样品中多个组分的同时检测,获得2011教育部自然科学一等奖和2014瑞士国际发明展特别金奖,同时获专利授权10余项。本技术成果包括了光子微球、微流控芯片和自动化芯片分析检测仪三部分,可以用于肿瘤、感染性疾病(HIV、SARS、肝炎、禽流感等)、心血管疾病(高血压、心脏病)检测等。希望合作研发和生产,投资规模在200万人民币左右。
东南大学 2021-04-13
生物基多元醇的绿色制造
众所周知,石油、天然气和煤炭等不可再生的化石资源构成了当今世界燃料和化学工业的基石,丰富了人类的物质生活,创造了当今的繁华尘世。然而,随着化石资源的日益枯竭,能源供需矛盾的不断恶化,油价的不断飙升,化石工业造成的环境污染日益严重等问题,已成为制约社会和经济可持续发展的瓶颈。这些问题大大推动了人们研究可再生的生物质资源制备能源和大宗化学品的热情。多元醇作为新一代能源和化学品的平台,其广泛的应用前景已引起了众多科研工作者的广泛关注。目前,生物基多元醇的工艺路线主要集中在山梨醇的加氢裂解和纤维素通过热裂解、催化裂化及酸水解加氢等反应途径制得。但是这两种工艺路线具有工序流程长,反应条件比较苛刻(需要高温、高压下进行),产品比较复杂,分离难度大,成本高等不足,严重制约生物基多元醇产业的健康发展。本项目针对上述工艺路线存在的不足,设计了三条新的反应途径,均能有效地将葡萄糖单体转化为附加值比较高的多元醇,如合成聚酯纤维的基础原料:1、2-丙二醇和乙二醇等。这些工艺路线与传统路线相比,具有反应条件比较温和,产物比较简单,成本比较低等优点,同时也能达到节能减排的目标,符合环境友好的要求。因此,这么有意义的研究工作应该得到更大的扶持力度,使其尽快产业化,走出符合我国生物产业特色的道路。
南京工业大学 2021-04-13
热管式生物质气化炉
热管式生物质气化炉是将高温热管技术引入生物质气化炉中,实现生物质的间接气化,使得生成的燃气中不含氮气,热值可达15MJ/Nm3。试验结果表明与用空气直接供热气化的气化炉气体组分和热值比较,用热管式生物质气化炉间接供热得到的气体组分中H2的含量很高,约是用空气直接供热气化的10倍,热值是用空气直接供热气化的2~3倍。用所开发的热管式生物质气化炉建立小规模分布式热电联产系统,合理利用生物质能,解决我国分散地区的热、电供应问题。已申请了两项发明专利,目前均已授权。旋转热管生物反应器是采用回路热管的技术原理,依靠热管吸热段上的热管浆叶来实现吸热。热管浆叶和热管搅拌轴是相通的,两者组合的旋转热管本身是一个等温体,当热管浆叶围绕搅拌轴旋转时,在釜内形成圆筒形的液体等温层,并通过布置多层热管浆叶,就可实现整个釜内的温度均匀性。优点是吸热桨叶单元占用空间小,强化管外反应器内介质的传热传质,提高反应器内传热效率和生物反应效率,同时实现节能减排目的。已申请了一项发明专利,目前已授权。
南京工业大学 2021-04-13
γ-氨基丁酸的生物制备技术
该产品获国家基础科研计划(2009CB724700)、国家高技术研究发展计划(2012AA021503)和博士学科点专项科研基金(20103221110006)等支持,专利在申1项。该产品可应用于食品、药品以及生物材料等领域。以L-谷氨酸为底物,工程菌直接脱羧反应,反应转化率高达100%,产物得率为70%,纯度达99%以上,工艺简单,绿色无污染。随着人们生活质量的提高,养生越来越受到人们的密切关注。因为γ-氨基丁酸的生理与保健作用,它将供不应求,所以推广该技术与该产品迫在眉睫。该项目拥有自主知识产权,目前已小批量生产。
南京工业大学 2021-04-13
揭示生物振荡网络的设计原则
生物振荡网络作为生命体的内禀时钟,调节各种与时间信息相关的生命过程,因此需要在减小计时涨落的同时,保持对环境信号的敏感性。 对于处于热力学平衡态的系统,涨落耗散定理表明,高响应与低涨落不可能同时完成。但是生命系统处于非平衡态,并没有涨落耗散定理的约束。对于振荡网络这一非平衡态系统,如何保持高敏感性和精确性,以及对应的热力学的设计原理,是一个重要的利用物理原理理解生命系统的基本问题。 欧阳颀教授研究组与美国IBM沃森研究中心的涂豫海教授(北京大学物理学院/定量生物学中心教授)展开合作,首次从理论上揭示了生化反应网络优化振荡功设计原则。研究发现,通过增加系统的自由能耗散,振荡的计时精确性增加,这与之前的研究相符;更重要的是,耗散的增加还能够增强系统对于外界信号的响应,两者呈正比关系。通过对简单模型的解析发现,额外的自由能耗散可以加强振荡相位与振幅的耦合,借此来增强对信号的响应,从而打破了平衡态的涨落响应关系。为了同时达到高敏感性和精确性,系统需要精细的分配参与反应的非平衡环路中的自由能耗散。研究基于化学势与反应流提出了两条重要的能量分配原则,并在相关实验数据分析中得到验证。
北京大学 2021-04-11
肿瘤特异的生物正交前药
协同利用酶触发的超分子自组装和生物正交断键反应,在肿瘤细胞内部实现原位、特异的前药激活,不仅极大地降低了抗癌药物的毒副作用,而且增强了靶向活化能力。设计合成了带有前药激活开关Tetrazine的酶响应组装前体短肽,利用宫颈癌细胞过表达的磷酸酶,在肿瘤原位构建功能纳米组装体,使前药激活开关获得肿瘤靶向性并且大量富集。后续使用的阿霉素前药TCO-DOX (其中,TCO为生物正交脱笼基团)在正常细胞或组织内没有激活,不产生毒性;而在肿瘤内则能被高效激活,显著提高了癌细胞的杀伤效果。
北京大学 2021-04-11
利用餐饮废油制取生物柴油
项目简介近年来,石油价格不断上涨,我国汽车保有量持续上升,燃料油用量越来越大,这在一定程度上造成了我国燃油供给的紧张。另一方面,随着餐饮行业的发展,加之我国人民的饮食习惯,日益增加的餐饮行业产生的废食用油,已经成为环境及饮食安全方面的一大隐患。本项目的目的在于将餐饮行业的废油(脂)经过净化处理后,在碱催化剂存在下,进行酯交换反应,生产市场紧缺的车用燃油替代品——生物柴油。经检测本项目制得的生物柴油性能指标如下:二、市场前景当今餐饮行业异常发达,产生的废油资源越来越丰富。石油短缺,汽车保有量增多,造成石油柴油供应短缺,使生物柴油市场前景非常乐观。三、规模与投资规模5000吨/年,厂区占地1000㎡,设备投资100万元。四、生产设备设备名称   规格    材质   数量反应釜    5000L   不锈钢   5个贮罐 10000L 不锈钢  4个离心泵 5台热水锅炉   3吨          1个五、效益分析以地沟油、动植物油、酸化油[动植物油皂角油],脂肪酸,毛油.等经净化后脱水干燥后,在碱催化剂作用下与甲醇进行酯交换反应,生产脂肪酸甲酯[生物柴油]。生产成本:原料费:甲醇   50kg  200元净化餐饮废油  3400元/吨 人工费      20元/吨水、电费   20元/吨 其他原料及加工费    50元/吨生产成本:       3690元/吨 包装、运输及其他经营成本 600元/吨生物柴油市场售价    4800元/吨年经济效益:(4800-600-3690)×5000=255万元六、合作方式合作,转让。
河北工业大学 2021-04-13
导电聚苯胺及其衍生物
导电聚合物的发现为有机高分子材料的应用开辟了一个新领域,聚苯胺由于合成工艺简单、掺杂机制特殊,具有良好的导电性、优良的环境稳定性以及特殊的光、电、磁学性能而得到广泛的研究。但仍存在以下问题:(1)聚苯胺的分子链骨架刚性强,分子间相互作用力大,几乎不溶不熔,加工性能和机械性能较差;(2)合成产物的结构、分子量和聚集态难于控制,对宏观性能的影响大;(3)聚苯胺经掺杂后虽然表现出一些优异的性能,但相对于本征态,稳定性降低。针对以上问题,本项目采用化学氧化聚合法合成了不同
厦门大学 2021-01-12
复合微生物净水新技术
可以量产/n成果简介:采用先进、高效的分离、筛选技术从自然界不同环境中分离出具有高效降解、转化水体污染物的微生物,并优化其培养条件,开发出各具特点的高密度发酵工艺,获得多种可工业化生产的净水微生物制剂。根据污染水体的特点,有机复配各类净水微生物制剂,采用直接投放、原位修复的方式,对各类污染水体进行有针对性的处理。技术类型:专利技术(国家发明专利授权号:CN1508243)应用前景:该技术可广泛应用于富营养化水体生态修复、黑臭河流脱黑除臭、沼液无害化处理以及生活污水及工业有机废水的处理。
华中农业大学 2021-01-12
首页 上一页 1 2
  • ...
  • 19 20 21
  • ...
  • 122 123 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1