高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
一种材料强度
分布
获取方法
本发明提供了一种材料强度分布获取方法,通过材料的强度试验获得若干个材料强度样本(img file='DDA0001595268000000011.TIF' wi='60' he='59'/)确定基于试验数据的强度随机变量样本:(img file='DDA0001595268000000012.TIF' wi='179' he='128'/)将强度随机变量η采用混沌多项式展开,根据高斯采样计算得到各阶混沌多项式基函数样本(img file='DDA0001595268000000013.TIF' wi='156' he='66'/)采用马尔科夫链?蒙特卡洛算法获得各阶混沌多项式系数γ的后验分布样本(img file='DDA0001595268000000014.TIF' wi='77' he='60'/)根据重构的混沌多项式系数样本(img file='DDA0001595268000000015.TIF' wi='47' he='55'/)和混沌多项式基函数样本(img file='DDA0001595268000000016.TIF' wi='126' he='63'/)确定强度随机变量的后验分布样本:(img file='DDA0001595268000000017.TIF' wi='364' he='120'/)根据强度随机变量的后验分布样本(img file='DDA0001595268000000018.TIF' wi='33' he='53'/)计算强度的后验分布样本:(img file='DDA0001595268000000019.TIF' wi='247' he='62'/)最终采用区间统计的方法获得材料的强度分布。本发明方法仅需完成少量强度试验即可获得材料的强度分布,且不需要假设材料的强度分布类型,节约了大量的试验时间和经费,同时,也避免了因材料强度分布模型的错误选取而引入的误差。
东南大学
2021-04-11
低通信开销的
分布
式学习
目前,训练机器学习模型依赖于海量的数据,当以集中方式训练时,会带来很大的计算成本。因此,现在普遍的共识是,未来的机器学习应该以分布式方式实施。通常,分布式学习是以server-worker模式中进行的,其中server利用从workers收集的信息更新学习参数,然后将这些参数广播给workers。 但是,随着worker数量的增加,通信开销也会大幅
南方科技大学
2021-04-14
锂电池
分布
式带电拆解
团队已完成退役锂电池带电破解分选回收生产线、移动式拆解车等技术成果转化,实现了“1+N”锂电分布式带电拆解新模式,解决退役动力锂电池分布散乱、难以集中无害化处理的难题。 一、项目进展 已注册公司运营 二、企业信息 企业名称 锐锋智锂(陕西)科技有限公司 企业法人 张志杰 注册时间 2022.5.16 注册所在省市 陕西省西安市 组织机构代码 91610113MABLKTJR6C 经营范围 技术服务、技术开发、技术咨询、转让及推广 企业地址 陕西省西安市雁塔区雁翔路99号博源科技广场C座1401 获投资情况 海沃能量盒子1000万投资意向 三、负责人及成员 姓名 学院 入学时间 张志杰 能源与动力工程学院 2021 陈博 能源与动力工程学院 2019 董梓竣 管理学院 2019 宋自远 电气学院 2019 陈昊煊 能源与动力工程学院 2019 黄嘉慧 人文社会科学学院 2019 罗寒非 化学学院 2019 陈楷林 能源与动力工程学院 2019 师鸣遥 生命科学与技术学院 2019 四、指导教师 姓名 学院 职务/职称 研究方向 丁书江 化学学院 教授/院长 电化学储能 杨国锐 化学学院 副教授 锂电回收 延卫 能源与动力工程学院 教授 污染控制 五、项目简介 随着新能源汽车产销量逐年爆发时增长,大量退役动力锂电池涌入报废市场。一方面,镍钴锂元素作为电池极粉生产的关键性材料,而我国长期以来严重依赖进口,面临巨大的材料供给缺口;另一方面,退役电池因含有余能,在堆积、运输及拆解过程易发生起火爆炸(相当于1/8同质量TNT的爆炸威力),危害操作人员安全,同时造成不可逆的镍钴锂产物损失。 因此,预放电步骤是传统工艺中的必经之路,而在预放电过程中又存在严重的环境污染问题,致使传统拆解企业难以进驻工业园区,大大压缩了行业的发展空间。针对上述痛点,本团队研发的项目: (1)首创性实现了对退役动力锂电池的带电拆解,避免了传统拆解高浓盐水预放电工艺,降低拆解成本,单条产线可年减少20万吨高浓盐水的排放; (2)通过自研高效吸附剂与先进的废水处理工艺,实现生产线三废零排放,年减少超百万元的治污成本,获得准入工业园区的资格; (3)内置余热回收系统回收电池残余电能,年减少超1万吨标准煤燃烧,减少超4万吨的CO2排放。 经过学生团队技术攻关和基础实验研究,我司已获得了成套的动力锂电池破解分选技术,已申技术专利20余项。其中负责人已获5项核心授权专利,实审专利11项,对技术、产品形成全方位保护。经过多次技术升级,已成功调试安装了退役动力锂电池破解分选成套设备生产线,该生产线完全达到工业生产要求,锂电池年处理量提升到5000吨,处理能力里超同行10%,产品回收率超同行20%,产品价值率领跑同行30%,并可入驻工业园区。 此外,团队已完成退役锂电池带电破解分选回收生产线、移动式拆解车等技术成果转化,实现了“1+N”锂电分布式带电拆解新模式,解决退役动力锂电池分布散乱、难以集中无害化处理的难题。公司已获得海沃能量盒子1000万投资意向,并与多家智能化设备供应商达成代工生产合作,研发的生产线已在云南云天化集团、陕西全通集团完成中试验收,即将投入大规模生产使用。
西安交通大学
2022-08-10
DNA和RAN在细胞中的
分布
宁波华茂文教股份有限公司
2021-08-23
虚拟实境动画(碳原子电子
分布
)
产品详细介绍 最新推出基于IE浏览器的三维虚拟实境分子原子模型库,可真实再现各种微观运动结构,任意翻转角度及放大缩小动态观察,极大方便老师讲学。
湖北武大实业
2021-08-23
一种生物溶液
浓度
的光谱传感测试方法
本发明涉及一种生物溶液浓度的光谱传感测试方法,依据了包层介质的光学响应遵循的物理学因果性原理,根据因果性原理,包层折射率的实部
上海理工大学
2021-05-04
低
浓度
聚丙烯酰胺溶液的制备方法
本发明公开了一种低浓度聚丙烯酰胺溶液的制备方法,是以浓度为6%~12%的工业级丙烯酰胺单体溶液为原料,过硫酸钾为引发剂,乙二胺四乙酸二钠为络合剂,异丙醇为分子量调节剂,乙二胺、醋酸、水杨酸钠、A试剂为反应助剂,加入设有搅拌器、回流冷凝器和温度计的聚合设备中,调节pH值为7~8,在35℃~85℃的条件下聚合反应2~6小时后,制得聚丙烯酰胺溶液。本发明工艺简单,工序少,流程短,节约能源,经济可行,制得的聚丙烯酰胺溶液可以直接在原聚合设备内继续加水稀释后,进Mannich阳离子化改性制备阳离子聚丙烯酰胺,也可以直接用作高分子乳化剂、粘合剂等,有很好的推广应用价值。
扬州大学
2021-05-07
高
浓度
(含盐)工业废液流化床焚烧技术
高校科技成果尽在科转云
东南大学
2021-04-10
催化剂颗粒
浓度
及粒度在线监测仪
众所周知,炼油厂催化裂化装置中烟气轮机的安全运行和使用寿命在很大程度上取决于第三级旋风分离器排出的烟气介质中所含催化剂浓度和颗粒度的大小。为保证烟气轮机得以安全长期运行,有必要对烟气轮机入口的烟气进行在线实时监测,以及时了解烟气中含催化剂的浓度和粒度大小以及变化,并采取相应的控制措施。 我校最新研制的全自动TSM-2颗粒浓度和粒度在线监测系统,根据先进的Mie光散射理论,针对催化烟气的工艺特点和粒径范围,采用全散射原理和多波长消光测粒技术,可实时地获得颗粒的粒径分布和浓度数据。系统功能如下 1.能实现非接触连续测量。 催化剂检测范围:粒度:0.1微米—20微米;浓度:20—1000mg/m3。 2.系统使用开放式的数据库管理技术,采用树状管理结构。保证了系统的易扩展性和数据的易维护性,同时为用户提供了方便、开放、灵活的系统设置和组态功能。 3.采用两种数据保存方式:数据文件和数据库的形式,大容量的存储空间可以保留长期的监测数据。 4.查询催化剂监测数据。 5.报警: ①可以设置浓度报警限值 ②可以设置平均粒径报警限值 6.采样时间间隔设置:可以任意设置(大于1分钟),最快的采样时间间隔为5秒钟。 众所周知,炼油厂催化裂化装置中烟气轮机的安全运行和使用寿命在很大程度上取决于第三级旋风分离器排出的烟气介质中所含催化剂浓度和颗粒度的大小。为保证烟气轮机得以安全长期运行,有必要对烟气轮机入口的烟气进行在线实时监测,以及时了解烟气中含催化剂的浓度和粒度大小以及变化,并采取相应的控制措施。 我校最新研制的全自动TSM-2颗粒浓度和粒度在线监测系统,根据先进的Mie光散射理论,针对催化烟气的工艺特点和粒径范围,采用全散射原理和多波长消光测粒技术,可实时地获得颗粒的粒径分布和浓度数据。
上海理工大学
2021-04-11
高
浓度
氯化铵废水的综合处理技术
一、项目简介(发明专利:99100015.3)该技术是一种对含氯化铵工业废水综合治理并从废水中回收氯化铵的工艺,具有以下技术特点:1、利用多效蒸发、蒸汽喷射热泵及余热利用等技术,降低废水治理及回收产品的运行成本。2、采用低温蒸发路线,使蒸发系统全部或部分为真空蒸发,保证设备不被腐蚀,一般设备使用寿命在15年以上。设备折旧费的减小,使得废水治理和回收产品的成本降低。3、采用常温结晶工艺,使蒸发后废液直接进入结晶器。采用常温冷却结晶省去能耗较大的低温冷却系统。4、本项技术不产生二次污染。工艺过程的产物,一是固体氯化铵产品,一是蒸发冷凝水。工艺中冷却水闭路循环使用。应用本项技术不仅解决了含氯化铵工业废水对环境的污染,而且有较高的经济效益。本工艺技术目前已在河北、浙江、山东、河南、天津、内蒙、广东等省推广应用,直接经济效益好,环保效益巨大。且本项目所研究开发的废水治理工艺,也可在其它工业废水的综合治理中推广应用。二、市场前景氨及铵盐是应用非常广泛的化工原料,应用此类原料的生产中常常伴随高浓度氯化铵废水,此类废水采用常规的环保处理方法,存在技术可行性差、废水中的氯化铵得不到回收,因而综合效益不理想。用本技术处理高浓度氯化铵废水不但解决了环保问题,还会有可观的经济效益,采用此技术也可处理含其他盐类的工业废水,因此具有广阔的应用前景。三、生产设备蒸发器、分离器、结晶器、水罐、离心机、泵等。四、合作方式提供技术服务。项目负责人: 史晓平、赵景利
河北工业大学
2021-04-13
首页
上一页
1
2
...
26
27
28
...
177
178
下一页
尾页
热搜推荐:
1
云上高博会企业会员招募
2
64届高博会于2026年5月在南昌举办
3
征集科技创新成果