高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
分子结构解析与安全液体储氢
利用一束高强能量的飞秒中红外光激发反应体系里催化剂的一个振动,然后用另外一束超宽频的飞秒光探测这个振动的激发对反应物上所有振动频率的影响。通过扫描激发频率,催化剂上的任意振动激发对反应物的振动频率的影响就被直接测量下来。利用简单的物理原理,这种振动的相关性可被定量地转换成化学键与化学键之间的夹角,进而转换成催化剂与反应物结合成的反应中间体的三维结构。
北京大学 2021-04-11
分子基光催化产氢器件多相化
在利用太阳能分解水制取氢气的催化剂研究上取得新进展。该研究工作借鉴自然界光合作用,在多个光敏中心多个催化中心产氢器件构筑的基础上,进一步将其植入到金属有机框架材料中,模拟自然界酶催化环境中质子和电子的传输与转移,在有效规避分子基催化剂稳定性差的同时,极大地提高了光催化产氢性能,为人工模拟光催化剂的设计和构筑提供了新的思路。 人工模拟光合作用,利用太阳能在催化剂作用下分解水制取氢气,是实现将太阳能转化为清洁的化学能,解决人类社会面临的能源危机和环境污染问题的理想途径。在早期,我校化学学院苏成勇教授和石建英副教授研究团队发展了空间上相互独立、功能上相互等价,集合8个光敏金属有机钌中心和6个催化Pd2+中心于一体的金属-有机分子笼产氢器件[Pd6(RuL3)8]28+(MOC-16),在单一分子笼内构筑出多个相互独立的能量传递和电子转移通道,获得了高达380 μmol h-1的初始产氢速率和635的TON(48h) [Nature Communications, 2016, 7: 13169]。虽然金属有机分子笼提高了分子基催化剂的产氢性能,但光照条件下的稳定性仍然是制约其进一步应用的决定因素。       最近,我校化学学院苏成勇教授和石建英副教授研究团队又基于配位组装策略实现了Au25(SG)18纳米簇在金属有机ZIF-8主体框架内部和外表面的可控组装[Advanced Materials, 2018, 30,1704576]。采用相似策略,他们将MOC-16植入到ZIF-8主体内,进一步将ZIF-8转化为Znx(MeIm)x(CO3)x (CZIF),获得了MOC-16@CZIF催化剂。
中山大学 2021-04-13
电动汽车增程器用氢转子机
北京工业大学 2021-04-14
微通道甲醇重整制氢反应器
该反应器可在较低工作温度下实现甲醇高效重整制氢,在275oC下可以实现94%以上的甲醇转化率,重整气中H2含量为74%,CO2含量为25%,CO含量为1%。经过36小时连续测试后性能稳定。单片反应器输出功率约12W。该反应器可与蒸发器进行集成,用于为小型便携式燃料电池堆栈供燃料气。相关研究结果已发表SCI论文两篇,所申请发明专利处于实质审查阶段。成熟度:已有样品技术创新类型:改革创新期望技术合作方式:技术入股
哈尔滨工业大学 2021-04-14
耦合储氢单元的燃料电池电源
1 成果简介作为一种清洁、高效的能量转换装置, 燃料电池是各种电化学电池体系中的理论比能量“ 绝对冠军”, 而且功率密度高、电流密度大, 是最先进的能量转换技术之一。燃料电池在发电过程中,除了提供电能以外,还会产生废热。所以传统燃料电池电堆中,单片燃料电池之间通常设有冷却板,需要采用大流量的空气或者冷却水来为燃料电池散热。而燃料电池工作时需要氢气作为燃料,如果以储氢合金作为氢源,则储氢合金在释放氢气时会吸收热量。 本成果将燃料电池与储氢单元进行结构的耦合,可利用储氢合金来部分吸收燃料电池发电时产生的废热,既解决了燃料电池水管理和热管理的难题,又能解决储氢单元放氢稳定性的问题,还能降低燃料电池系统寄生功率,提高系统的功率密度和能量密度。表 1 中列出了耦合型燃料电池的性能参数。本成果耦合型质子交换膜燃料电池解决了质子交换膜燃料电池的水热管理问题,能够使燃料电池系统结构更加紧凑,能量密度和功率密度更高。 上图 耦合燃料电池的内部结构及外部结构图2 应用说明经过近十年来的电动汽车、分布式电站、电源等领域的广泛示范应用(燃料电池已经在航天、军事上得到应用,燃料电池家用电源已经在日本产业化),质子交换膜燃料电池技术的成熟度已经逐渐被用户所接受。目前,其商业化主要问题是价格较高(采用进口材料成本昂贵),而本项目利用国产原材料制备燃料电池电源,燃料电池材料供应不仅有安全保障,而且还有低成本优势,可望克服燃料电池高成本的商业化障碍。3 效益分析由于目前国内外尚无同类产品,而且各行各业对新型电源的需求比较迫切,因此本成果具有较大的推广空间。 如批量生产, 本电源价格每台约 1500 元/千瓦。 来自政府的资金补助以及军事、工业、新能源等应用领域的直接采购是使燃料电池电源商业化逐渐兴盛的主因。据美国市场研究机构 Pike Research 估计, 2016 年市场上的主力燃料电池产品功率将在 100W~2kW 之间,用于替代部分铅酸电池和柴汽油发电机,主要应用于船舶、 专用车、无人载具、 战场支持系统、 备用电源、 应急电源等。
清华大学 2021-04-13
湖南隆深氢能科技有限公司
湖南隆深氢能科技有限公司 2022-11-01
电工模电数电电气控制(带直流电)实验设备
适用于高等院校及要求较高的中专、技校、职业学校,可完成电工学、电工原理、电路分析、模拟电子技术、数字电路,电气控制设备等课程实验。该设备是现有实验室设备的更新换代或新建、扩建实验室的理想产品,它的配备是学校上水平、上等级的重要标志。结构与配备与电工、模拟、数字电子电路、电气控制四合一基础上增加直流电机调速环节,直流实验电机等,除能完成前者全部实验内容外,增加实验:直流电机启动;实验二:直流电机的调速;实验三:直流电机的反转;实验四:直流电机制动实验。   本系列产品的特点: 实验台具有较完善的安全保护措施,较齐全的功能。实验操作桌中央配有通用电路插扳,电路插板注塑而成,表面均布有九孔成一组相互联通的插孔,元件盒在其上任意拼插成实验电路;元件盒盒体透明,直观性好,盒盖印有永不褪色元件符号,线条清晰美观。盒体与盒盖采用较科学的压卡式结构,维修、更换元件拆装方便。元器件放置在实验操作桌下边左右柜内,实验时取存方便,大大提高了管理水平,规划化程度,大大减轻了教师实验准备工作。 适用范围: 适用于高等院校及要求较高的中专、技校、职业学校,可完成电工学、电工原理、电路分析、模拟电子技术、数字电路,电气控制设备等课程实验。该设备是现有实验室设备的更新换代或新建、扩建实验室的理想产品,它的配备是学校上水平、上等级的重要标志。 本系列设备实验台和实验操作桌结构和功能相同: 1、实验台构成与性能: 1.1. 电源及参数 1.1.1 输入电源:三相四线电源,输入时指示灯亮(SBK-528模电、数电实验室成套设备为单相三线输入) 1.1.2 电源输出:有保险丝和漏电保护开关二级保护功能。 A组:单、三相可调交流电源,提供三相0~430V连续可调的交流电源,同时可得到0~240V单相可调电源(配有一台1.5KVA的三相自耦调压器,配有三只指针式交流电压表,指示调压器输出电压)。注:SB-2003B模电、数电实验室成套设备无三相调压输出,改为一台0.5KVA单相0-250V输出。 B组:低压交流电压3-24V分七档可调,最大输出电流1.5A,电流表指示。 C组:低压直流稳压电源,电压5V,电流0.5A,电流表指示。 D组:双路恒流稳压电源,二路输出电压均为0~30V,由多圈电位器连续调节,具有预设式限流过载保护功能,输出最大电流为1.5A,每路电源输出有0.5级数字电流表、电压表指示。电压稳压度
芜湖中方科教设备有限公司 2021-08-23
一种从铁水脱硫渣中回收鳞片石墨的方法
(专利号:ZL 201510312021.1) 简介:本发明公开了一种从铁水脱硫渣中回收鳞片石墨的方法,属于资源综合利用领域。该方法具体步骤是:首先将脱硫渣破碎,并磁选回收铁,尾渣破碎至小于1mm并加水配成浓度为30~40%的浆液,加入浮选剂进入浮选机浮选,浮渣加水配成浓度50~70%的浆液并球磨10~30min,然后磁选回收铁,而尾渣加水制成浓度为30~50%的浆液,送往浮选机进行浮选,浮选剂由“煤油+2号浮选油”或“液体石蜡+辛醇”组成,回收的鳞片石墨通过多次“球磨-磁选-浮选”工艺处理提高品位,最终获得的鳞片石墨中固定碳含量可以达到90%以上,而且其中的铁也可以得到更充分的回收。
安徽工业大学 2021-04-11
一种高炉熔渣水淬废汽余热回收系统
简介:本发明提供了一种高炉熔渣水淬废汽余热回收系统。该系统包括高炉渣水淬装置、冲渣水循环装置和废汽余热回收装置;所述高炉渣水淬装置由熔渣沟、水淬装置以及排渣输送带组成,所述冲渣水循环装置由水淬装置、循环水池、水淬泵以及补水管组成,所述废汽余热回收装置由水淬装置、三相分离器、风机、换热器、热水泵以及低温用户组成。与以往采用回收冲渣废水余热来回收熔渣余热不同的是本发明采用回收水淬熔渣产生的废汽中的余热,废汽水质好于废水,克服了废水中硬度大、设备结垢、堵塞等缺陷。本发明有效回收了冲渣废汽余热,具有节能减排、环保的优点,收集的余热可用于满足低温用户的需求。
安徽工业大学 2021-04-13
高品质钢冶炼过程渣- 钢- 夹杂物成分智能控制模型
高品质钢的冶炼典型流程为“转炉→精炼→中间包→结晶器”,冶金反应器内存在着合金-钢、钢-渣、钢-夹杂物、钢-耐材、渣-耐材、钢-空气、钢液凝固和元素偏析等反应和过程,各个化学反应“耦合”发生、互相影响。因此,有必要建立智能模型有效地预测不同反应器内夹杂物成分的变化,准确地在线了解精炼和连铸过程的工作状况,使生产全流程始终处于最佳工作状态,从而确保夹杂物的精准控制,最终提高钢产品质量的稳定性和可靠性。同时,通过模型的优化计算,可以根据不同钢种的性能需求,对钢种的生产工艺进行定制化设计。(1)高品质钢炉精炼过程夹杂物预测研究:− 精炼过程宏观流动数学模拟:计算精炼过程钢液和精炼渣的流场和温度场、夹杂物的运动,同时计算吹氩强度、钢包尺寸等因素对钢包流场、夹杂物运动和去除的影响。− 精炼过程夹杂物成分动力学:研究吹氩强度、钢包尺寸等因素对多元反应速率的影响;耦合计算 LF 炉内“渣-钢-夹杂物-合金-耐材-空气”多元反应过程夹杂物成分变化。− LF 炉内夹杂物尺寸动力学:建立夹杂物生成、长大和去除的尺寸变化多尺度模型,确定不同条件下夹杂物的尺寸变化行为,预测钢中夹杂物的数量变化和尺寸分布规律。− LF 炉内夹杂物预测模型:将夹杂物成分和尺寸动力学计算和宏观流动模拟相耦合,建立 LF 炉精炼过程夹杂物成分、数量和尺寸预测模型。(2)高品质钢中间包连铸过程夹杂物预测研究− 中间包内宏观流动数学模拟研究:计算中间包内钢液和覆盖剂渣相的流场和温度场、夹杂物运动和去除。计算开浇和换包的非稳态浇注、中间包结构对中间包浇铸过程的影响。− 中间包内夹杂物动力学研究:耦合计算中间包中“渣-钢-夹杂物-耐材-空气”多元反应中夹杂物成分变化,确定中间包内各位置的反应速率。− 中间包内夹杂物预测模型的建立将渣-钢-夹杂物-耐材-空气反应和宏观流动模拟相耦合,建立中间包过程多元反应夹杂物成分、数量和尺寸预测模型。(2)高品质钢结晶器凝固过程夹杂物预测研究− 结晶器内钢液凝固冷却过程中夹杂物行为研究:通过实验室实验研究钢液凝固和冷却过程中温度变化对原有夹杂物与钢基体的反应的影响,以及不同成分的钢液在冷却和凝固过程中夹杂物新相析出,确定温度变化对夹杂物影响机理。− 结晶器内宏观凝固和流动数学模拟研究:研究结晶器过程钢液、渣相的运动,使用融化模型研究结晶器过程凝固坯壳的凝固和形成,计算夹杂物在钢-渣界面的去除行为。− 结晶器内钢液凝固过程夹杂物动力学研究:计算铸坯凝固过程钢液成分偏析,与保护渣-钢-夹杂物反应进行耦合计算,预测铸坯中夹杂物的成分。计算夹杂物被凝固前沿捕捉行为,预测铸坯中夹杂物的数量和尺寸分布。− 结晶器内钢液凝固夹杂物预测模型的建立:通过将元素偏析、保护渣-钢-夹杂物反应和宏观流动数学模拟相耦合,建立结晶器凝固过程多元反应预测模型,实现铸坯中夹杂物成分、数量和尺寸空间分布的精准预测。(4)高品质钢制造过程夹杂物智能预测模型在工业生产中的应用− 模型的验证和优化:高品质钢制造进行全流程取样调研,对建立 LF 炉、中间包和结晶器内夹杂物反应模型进行验证和优化。− 模型应用:将建立的高品质 LF 炉、中间包
北京科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 10 11 12
  • ...
  • 52 53 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1