高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于B/S结构的生产数据查询与分析软件系统
实时把握生产、库存等数据,是企业进行生产经营管理的基础。本项目以制造执行管理系统(MES)数据库为核心,采用Web浏览器/服务器(B/S)的方式,对生产数据进行查询和分析,为管理者决策提供科学的依据。本软件系统的主要功能如下: 基于浏览器的有关生产订单、生产计划、作业计划、生产过程、生产实绩、质量、库存等数据的实时查询功能; 基于浏览器的多种数据分析方法; 针对多种用户角色的权限控制功能、数据备份和数据安全保护功能。
北京科技大学 2021-04-11
尾砂坝稳定性分析评价与综合治理
所分析研究的尾矿坝坝址区为一峡谷段,两岸山顶高程可达500m左右,土坝于1978年施工后并投入使用。坝底高程为425m,坝顶高程为455m,坝高30m,坝顶宽5m,坝顶长90m。分设三个马道,设计边坡比自上至下分别为1:2.0、1:2.5、1:3.0,下游坡的变坡处设马道宽2m,下游坡脚设排水棱体,排水棱体高7.5m,坝址堆石棱体坡比为1:1.5。相应设计总库容77万m3,有效库容62万m3,服务年限20年。坝体材料由人工填土、残积土组成。尾砂坝运行以来,随着尾砂的堆积和水位上升,整个坝体逐渐处于饱和状态,坝面多处有水渗出。1998年2月13日,当时水位距坝顶约2m,右坝坡约447m高程处渗漏产生流土而失稳破坏。 该研究项目分析了土坝塌溃的原因和影响土坝稳定性的机理;对重建后坝体的安全稳定性进行了分析计算,并针对相应影响因素提出了综合治理对策;对类似工程土坝的设计施工及运行管理提出了相应的注意事项和预防措施。有相应的分析软件。
武汉工程大学 2021-04-11
络筒机车间的数据实时采集网络与分析系统
本系统针对络筒机车间的特点,提供一个运行在局域网的数字通信网络软硬件系统,将各分散的络筒机设备有机结合在一起,并从络筒机生产过程与全车间等不同层面进行实时的数据采集、统计、处理分析、故障检测与状态估计及预测。系统功能: 对络筒机进行实时故障检测;采集络筒机的生产数据:纱织、批号、长度、班产量速度等;质量监控:清纱器切除次数、机械效率\锭、最低效率;提供报表自动生成系统,显示供纱管情况:供应管数、失误数;结合外部市场和本地运行状态实现动态成本监控;根据生产情况进行资源状态计量管理;络筒机的性能分析。将实际制造过程测定的结果与过去的历史记录和企业制定的目标以及客户要求进行比较。
东华大学 2021-02-01
SARS-CoV-2基因组分析进化和起源的研究
2020年3月8日,安徽师范大学在bioRxiv上上传了一篇题为Genome-widedata inferring the evolution and population demography of the novel pneumonia coronavirus (SARS-CoV-2) 的研究分析,作者使用10个新测序的SARS-CoV-2基因组,并结合GISAID数据库中的136个基因组,通过不同的分析方法(如EBSP、错配和中性检测等)研究前三个月数据的遗传变异和统计。 结果显示80个单倍型共有183个突变位点,包括27个简约性信息位点和156个单一位点。对遗传多样性的滑动窗口分析表明,SARS-CoV-2基因组丰度的变化有一定范围,这可以解释目前这种病毒的广泛和高适应性。遗传学分析不支持穿山甲是中间宿主。在最初的单倍型(H14)中,一个患者样本居住在华南海鲜市场附近(约2公里),这表明患者有无意识接触该市场史的可能性很高。然而,基于这个线索,也无法准确断定这个市场是否是SARS-CoV-2的起源中心。此外,从这个市场收集的16个基因组,包含10个单倍型,表明市场在短期内出现循环感染,这可能导致武汉和其他地区爆发SARS-CoV-2。EBSP结果显示,第一个估计的扩展日期从2019年12月7日开始,这表明SARS-CoV-2的传染可能在11月中下旬开始。
安徽师范大学 2021-04-10
梯度纳米结构TWIP钢的晶体塑性有限元分析
强度和韧性的“倒置关系”是材料研究领域长期存在的难题。大量的实验表明,随着金属材料内部晶粒尺寸的降低,在强度获得提升的同时,韧性将大打折扣。目前,广泛采用的高强材料韧化策略有:(1)改变组分,通过引入和调整材料的多种主要元素,同时激活多种塑性变形机制,高熵合金材料就是采用这种思路;(2)改变微结构,在材料内部引入一种或多种梯度分布的微结构,避免由于特征长度突变带来的性能突变,有效克服金属材料强度和韧性的失配问题,这种材料被称为梯度纳米结构材料。 图1 梯度结构金属材料的类型(摘自:李毅,梯度结构金属材料研究进展,中国材料进展,2016, 35: 658-665)人工制备的梯度纳米金属结构主要包括以下几种:梯度晶粒,梯度位错,梯度孪晶,梯度固溶物,梯度相,以及包含两种以上的梯度混合结构。在已经发展成熟的金属材料内部引入梯度纳米结构,可以进一步提高其强韧性匹配能力。例如,通过表面研磨处理(SMAT)在孪晶诱发塑性(TWIP)钢表面引入大量的塑性变形,使其表面晶粒细化,随着深度的增加,晶粒细化的程度逐渐降低,同时塑性变形也会导致位错演化和孪晶的产生,因此在TWIP钢内部形成了包含梯度晶粒,梯度位错和梯度孪晶的梯度混合结构。这种梯度纳米结构TWIP钢的强度可以提升50%,断裂应变仅从60%下降到52%,具有更高的强韧性匹配能力。目前,关于梯度纳米结构TWIP钢的研究集中于实验,反映物理机制的本构模型研究还鲜见报道。西南交通大学力学与工程学院张旭教授与德国马普钢铁所、中国钢铁研究总院等机构开展合作,指导博士生陆晓翀发展出考虑位错滑移和变形孪晶等物理机制的微结构尺寸相关晶体塑性本构模型。依托DAMASK平台将该模型移植有限元,并对梯度纳米结构TWIP钢的单轴拉伸变形行为展开模拟,揭示了其微结构演化与宏观性能之间的关系,量化了不同梯度结构对材料强韧性的贡献。相关研究工作已在金属材料与固体力学交叉领域顶级期刊《International Journal of Plasticity》上在线发表,论文题目为Crystal plasticity finite element analysis of gradient nanostructured TWIP steel。 论文链接: https://doi.org/10.1016/j.ijplas.2020.102703作者首先使用不同晶粒尺寸Fe-15Mn-2Al-2Si-0.7C (wt.%) TWIP钢的单拉实验数据验证该模型的合理性,结果表明该模型对不同尺寸下的应力应变响应和应变强化行为都可以较好地描述,特别是细晶TWIP钢硬化率曲线中的up-turn效应。通过对内变量演化的分析及对比性模拟,作者发现这种up-turn效应源自于细晶中显著的背应力。 图2 对比不同晶粒尺寸TWIP钢的单拉实验和模拟结果由于梯度纳米结构TWIP钢的微结构十分复杂,晶粒数目众多,通过采用三维均匀化方法,建立了宏观试样尺寸的有限元模型。通过对每层单元赋予不同的晶粒尺寸,初始位错密度和孪晶体积分数,离散地描述材料内部微结构的梯度分布,并通过梯度网格划分方法进一步减少单元数目。对于材料表层微结构变化剧烈的区域,采用密度较高的网格,以保证更加精确地描述微结构的梯度变化。 图3三维均匀化方法示意图作者利用发展的晶体塑性模型,对均匀和梯度纳米结构的Fe-10Mn-0.5C-3Ni (wt.%) TWIP钢的单拉变形行为进行模拟。结果表明,在合理描述均匀结构TWIP钢应力-应变响应的基础上,通过引入微结构的梯度分布,无需修改任何参数就可以较好地描述梯度纳米结构TWIP钢的单拉力学行为。通过对比变形云图,作者发现均匀和梯度纳米结构TWIP钢的表面都会变的粗糙不平,但梯度纳米结构的表面粗糙度更加明显,产生的应变局域化形成了两个凹陷区,且凹陷区在垂直于平面方向也会发生收缩。随着深度的增加,收缩程度逐渐降低。通过对比性模拟,作者发现表面凹陷区的出现就是梯度纳米结构TWIP钢韧性略微下降的原因。而应变局域化的产生与表面纳米层晶粒的应变强化能力有关,提高表面纳米晶的硬化能力,就可以抑制表面凹陷区的出现和韧性的下降。此外,作者通过分析不同层位错密度的演化,进一步证实了上述观点。作者还通过对比性模拟量化了不同梯度结构对材料强韧性的贡献。结果表明:强度的提升源于梯度位错结构,梯度晶粒和梯度孪晶结构有助于保持材料的应变强化能力。 图4 均匀结构和梯度纳米结构TWIP钢的模拟结果对比分析。
西南交通大学 2021-04-10
全时空融合定位及用户行为分析挖掘大数据平台
研究背景及挑战: 高精度无缝位置服务是智慧生活的关键技术之一, 也是实现以人为中心的智能情境感知技术基础。然而, 复杂城市峡谷(高楼、天桥、隧道)地区连续导航、室内外高精度无缝定位由于卫星信号频繁受到阻隔、室内布局动态变化等因素,实现连续高精度全空间定位存在诸多挑战。 本科研团队研究内容: 基于团队在 Wi-Fi, ZigBee, INS、图像、超声波、声音、RFID 等多种定位技术科研成果,研发高精度、低功耗、低成本、易部署的多源融合定位云平台,提供全时空位置服务及用户行为挖掘服务平台。 融合定位云平台体系框架 全时空定位服务平台上下文 突破弹性导航软硬件架构及理论体系 基于因子图多源融合定位算法 科研基础: 国家重点研发计划项目“自适应导航软硬件技术”、高精度高鲁棒性室内定位关键技术及装置研究(863)、无线传感网络定位技术研究(NSFC)、基于众包和群智计算的室内无线定位理论和方法 (NSFC)、自适应室内无线信号变化的低代价高精度定位技术研究(NSFC)等项目的支持下,已完成全时空融合定位云平台,以及用户行为挖掘大数据平台建设。   科研成果: 1中国卫星导航定位科技进步一等奖 2 获UbiComp交通模式识别比赛冠军 3获阿里巴巴天池世界比赛冠军 4 制定国家实时定位标准6项 5 发表中科院一区顶级SCI期刊论文 10 篇 6 获得国家发明专利授权 20项,申请国家发明专利 32项 7 国际 IPIN2016 室内定位比赛第3名   成果应用案例: 华为、三星、中国电信集成、华大电子、22所等
北京邮电大学 2021-05-09
基于多源异构的新冠肺炎疫情数据分析技术
南京工业大学计算机科学与技术学院史本云教授团队联合香港浸会大学计算机科学系与中国疾病预防控制中心寄生虫病预防控制所(国家热带病研究中心)共建的智能化疾病监控联合实验室,及时搜集疫情相关信息,追踪相关数据,运用多源异构数据驱动的传染病学模型和分析方法,针对武汉(新冠肺炎发源地)、北京、天津(京津冀地区)、深圳(粤港澳大湾区)、杭州和苏州(长三角经济区)6座典型城市,开展了新冠肺炎疫情的回顾性分析和趋势预判,精准评估了不同复工场景下的疫情风险和经济损失。该研究针对新冠肺炎疫情发展期、控制期和恢复期的不同阶段,以及不同城市的传播特点(本地传播为主/输入病例为主),综合考虑了各个城市内不同年龄段的人口分布和不同人群(如学生、上班族和老人)的接触强度、接触时长等,设计了居家场所、学校场所、工作场所和公共场所4种主要接触场景。通过结合城市间的人口流动数据,构建了数据驱动的传染病动力学模型,对不同城市不同干预手段下的疫情走势进行了评估。在此基础上,研究人员结合不同城市的GDP增长预期和产业结构,基于对未来数日各城市疫情走势的研判,对下一阶段有序推动恢复正常生产提出了若干建议并进行了相应的经济损失评估。据悉,该研究成果和建议已经通过国务院参事提交国家相关部门。
南京工业大学 2021-04-10
2021全国普通高校大学生竞赛分析报告发布
2022年2月22日,中国高等教育学会高校竞赛评估与管理体系研究工作组发布2021全国普通高校大学生竞赛分析报告,其中包含本科院校大学生竞赛榜单13个、高职院校大学生竞赛榜单10个、省份大学生竞赛榜单3个。
中国高等教育学会 2022-02-22
DC-DC变换器的建模、分析与先进控制技术
因其广阔的工业应用范围和越来越高的精度、效率要求,DC-DC变换器系统已经引起电气工程师和控制工程师的广泛研究和关注。DC-DC变换器系统本身固有的非线性特性,已经使得传统线性控制方案,如PID控制等,无法取得满意控制效果。此外DC-DC变换器系统负载的突变、输入电压的波动、半导体器件的电磁干扰和参数变化等各种因素都严重破坏DC-DC变换器的精度要求。面向DC-DC变换器系统,我们已经拥有一整套的建模、分析和设计方案。利用干扰观测器技术对有负载突变、输入电压波动和模型误差引起的干扰进行实时精确估计,从而进行精确补偿,消除干扰造成的不利影响,可以与滑模控制和其他先进的非线性控制算法结合,实现基于干扰观测器的非线性抗干扰技术。我们提出了从建模、分析、先进控制方法设计到具体实现参数、规律总结凝炼等一整套的DC-DC变换器系统先进控制解决方案,成果已经成功应用于多种工业设备。一方面可以通过软件算法设计保证和提升DC-DC变换器系统的精度和效率,另一方面,可以实现系统对于负载突变、输入波动、电磁干扰的有效抑制,提升系统的抗干扰性能。目前成果已有多篇SCI高水平论文发表,申请授权多项发明专利,技术成熟,解决方案尤其适合多元干扰严重、模型偏差和精度要求高的应用场合。
东南大学 2021-04-13
压力容器压力管道实验应力分析及声发射检测技术
1. 项目概述TDS-303静态应变测量数据采集仪、DRA-107A数字动态应变仪均由日本欧美大地仪器公司制造,其测量范围为 ±640000µε,测量精度为±0.05%。可用于压力容器、压力管道及结构的静态、动态应变测量。操作简便,测量精度高,用途广泛。SDAES 30通道数字化声发射检测系统采集声发射数字及波形信号,应用人工神经网络对所采信号进行模式识别,对应不同的模式分别输出相应的指示,并输出TTL信号以驱动控制操作。压力容器压力管道静态应变测试及实验应力分析。压力容器压力管道动态应变测试及实验应力分析。压力容器压力管道缺陷动态声发射检测及寿命预测。2. 技术水平:分析手段齐全,仪器设备国内领先。
南京工业大学 2021-04-13
首页 上一页 1 2
  • ...
  • 81 82 83
  • ...
  • 716 717 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1