高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
甲酸电氧化技术
近日,清华大学化学系王定胜教授、李亚栋院士领导的课题组在甲酸电氧化领域取得突破,相关工作以“负载在氮掺杂碳上的单原子Rh:一种甲酸氧化的电催化剂”(Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation)为题在《自然·纳米技术》(Nature Nanotechnology)发表。燃料电池是一种理想的能量来源,它可以以环境友好的方式将化学能转换为电能。氢氧燃料电池作为航空飞船的主要燃料,在上世纪80年代就已经得到了发展,近年来氢氧燃料电池在汽车上的应用也有了突飞猛进的提高。然而氢氧燃料电池需要用体积大且危险的高压氢气作为其燃料,这限制了氢氧燃料电池的发展。而直接甲酸燃料电池(DFAFCs)由于其体积小,毒性小,nafion@膜的穿透率低等优点,被认为是未来便携式电子设备最有前途的电源之一。在之前的研究中,负载型纳米级钯和铂通常被认为是DFAFCs的阳极反应甲酸电氧化(FOR)中最有效的催化剂,并得到了深入的研究。然而,由于FOR催化剂质量活性较低和一氧化碳抗毒性较差, DFAFCs阳极材料的发展达到了一个瓶颈,极大地阻碍了其应用。SA-Rh/CN的合成路径示意图及其表征在本工作中,研究人员使用主-客体合成策略成功地合成负载原子分散Rh的氮掺杂碳催化剂(SA-Rh/CN),发现尽管Rh纳米颗粒对甲酸氧化活性很低,但是SA-Rh/CN却具有极好的电催化性能。与最先进的催化剂Pd/C和Pt/C相比,SA-Rh/CN的质量活性分别提高了28倍和67倍。有趣的是,在CO剥离实验中,我们发现虽然纳米级Rh催化剂对CO毒性十分敏感,但是SA-Rh/CN很难吸附CO并且可以在很低的电压下氧化CO,这说明SA-Rh/CN对CO毒化几乎免疫。经过长期反应的测试后,SA-Rh/CN中的Rh原子具有抗烧结的能力,并因此在30000s的CA测试或者20000圈ADT测试后活性几乎没有改变。在组装电池的实验中,SA-Rh/CN的质量比能量密度在不同温度下分别是商业钯碳催化剂的8.8倍(30oC),14.8倍(60oC)和14.1倍(80oC),这也说明了SA-Rh/CN在DFAFCs的应用中具有很高的潜力。最后,研究者用密度泛函理论(DFT)计算了Rh单原子甲酸氧化的机理。研究者发现在SA-Rh/CN上,甲酸根路线更为有利。和Rh纳米颗粒具有较低的CO吸附能垒不一样,SA-Rh/CN上的Rh单原子吸附CO能垒较高,以及与CO的相对不利的结合,使SA-Rh/CN具有极高的CO抗毒性。这一发现将传统的甲酸电氧化催化剂的质量比活性提高了一个数量级,并且很好地解决了传统纳米催化剂的CO毒化问题。该发现有助于在燃料电池领域取得突破,并有望应用于便携式电子设备上。本论文的通讯作者是王定胜教授、李亚栋院士,清华大学博士后熊禹是本文的第一作者。本研究受到国家自然科学基金委和科技部的经费资助。论文链接:https://www.nature.com/articles/s41565-020-0665-x
清华大学 2021-04-11
51008电和磁
宁波华茂文教股份有限公司 2021-08-23
电现象资源箱
电现象资源箱  型号:QWD1209 实验清单: 摩擦起电实验 简单电路实验 导体与绝缘体判断实验 电能的转化实验
青华科教仪器有限公司 2021-08-23
验电连接杆
产品详细介绍
天津市春合体育用品有限公司(天津市春合体育用品厂) 2021-08-23
柔性薄膜超级电容器
随着便携式电子设备的快速发展,将微型电子设备运用到可穿戴设备或者作为生物植入物的可行性越来越大。用柔性电子器件来替代传统的硬质电子器件的重要性也愈加凸显,如何解决柔性电子设备的储能问题,是实现这些可能性的重要因素之一。 本成果设计并制备了一种新型柔性微型超级电容器,其具有制备工艺简单,成本较低,适用于各种粉末状电极材料等特点。
电子科技大学 2021-04-10
柔性薄膜超级电容器
本成果设计并制备了一种新型柔性微型超级电容器,其具有制备工艺简单,成本较低,适用于各种粉末状电极材料等特点。
电子科技大学 2021-04-10
高频用软磁薄膜材料
在信息产业飞速发展的今天,为了满足人们对于手机、计算机、便携式数码设备等电子产品进一步轻便、小巧等的使用需求,必须使其核心的电磁元器件向微型化、薄膜化、集成化等方向发展。随着电路中的射频磁器件的体积不断缩小,使用频率不断提高,传统的铁氧体材料由于其饱和磁化强度低,使其在GHz使用频率下无法保持高的磁导率,这就迫切需要开发一种能够应用于GHz频率范围的高频软磁薄膜材料。目前国内外的科研人员采用不同方法研究并制备了多种软磁薄膜材料,如CoPdAlO(Sharp公司)、CoZrTa(Intel公司)、Co
厦门大学 2021-01-12
柔性有机热电薄膜的研究
未经处理的PEDOT:PSS聚合物在成膜后反复弯曲不到十次循环就会出现明显裂纹,完全无法满足柔性热电器件的要求。改善PEDOT:PSS薄膜的机械柔性成为首要任务。李其锴在阅读大量的文献后,提出加入离子液体增加导电高分子链间相互作用力,形成交联结构,从而实现机械性能的改善目的。在试验过程中尝试过多种离子液体,最终选定了表现较优的LiTFSI。实验结果出乎意料,新型的柔性有机热电薄膜10000次循环后仍保持稳定的电性能。此外,该LiTFSI/PEDOT:PSS复合柔性有机热电薄膜的电学性能较未处理的PEDOT:PSS薄膜提高了近2个数量级,其功率因子达到75μW·m-1K-2,拉伸应变达到了20%以上。 目前,发展兼具力学柔性和热电性能的柔性热电薄膜材料与器件已经是刘玮书团队的重要发展方向。刘玮书团队相关研究成果已经提交专利申请,并会被应用到新型的电子皮肤的温觉仿真中。
南方科技大学 2021-04-13
一种低辐射薄膜
本发明公开了一种低辐射薄膜,包括基底、覆盖于基底之上的 单银层和覆盖于单银层之上的周期性多层膜,薄膜厚度为 1325nm~ 1575.8nm;其中,单银层由两层保护层和 Ag 膜构成,厚度为 29nm~ 92nm;周期性多层膜由高折射率材料和低折射率材料交替叠加而成, 厚度为 1275nm~1490nm。本发明公开的低辐射薄膜采用金属薄银层 来抑制长波长红外波和短波长紫外波的透射,采用周期性结构来增强 可见光波段的透
华中科技大学 2021-04-14
液态金属薄膜热界面材料
液态金属薄膜热界面材料是一种具有超高热导率,能解决极端高热流密度散热难题的低熔点合金热界面材料。 一、项目分类 关键核心技术突破 二、技术分析 液态金属薄膜热界面材料是一种具有超高热导率,能解决极端高热流密度散热难题的低熔点合金热界面材料。基本原理为:填充于发热芯片与散热器之间,起到减小接触热阻,强化传热,降低高功率芯片温度的作用。 液态金属薄膜热界面材料实现途径包括组分调配和物化处理两步骤。通过组分调配设计具有高热导率的合金,然后通过物化处理提升材料的传热性能和稳定性。 一、主要技术优势 (1)热导率是传统材料的5倍以上; (2)接触热阻相对传统材料降低50%以上; (3)耐高温200ºC,传统有机材料一般耐温低于100ºC; (4)寿命相对传统有机热界面材料提高一倍以上。 二、主要性能指标 (1)热导率不低于30W/(m·K); (2)接触热阻不大于0.3cm2·K/W; (3)高温250ºC老化100小时,接触热阻增加值不大于0.3cm2·K/W。
北京理工大学 2022-08-18
首页 上一页 1 2
  • ...
  • 9 10 11
  • ...
  • 105 106 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1